1.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
2.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
3.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
4.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
5.Clinical Outcomes of Surgery after Neoadjuvant Chemotherapy in Locally Advanced Pancreatic Ductal Adenocarcinoma
Yoo Na LEE ; Min Kyu SUNG ; Dae Wook HWANG ; Yejong PARK ; Bong Jun KWAK ; Woohyung LEE ; Ki Byung SONG ; Jae Hoon LEE ; Changhoon YOO ; Kyu-Pyo KIM ; Heung-Moon CHANG ; Baek-Yeol RYOO ; Song Cheol KIM
Cancer Research and Treatment 2024;56(4):1240-1251
Purpose:
Clinical outcomes of surgery after neoadjuvant chemotherapy have not been investigated for locally advanced pancreatic cancer (LAPC), despite well-established outcomes in borderline resectable pancreatic cancer (BRPC). This study aimed to investigate the clinical outcomes of patients with LAPC who underwent curative resection following neoadjuvant chemotherapy.
Materials and Methods:
We retrospectively reviewed the records of patients diagnosed with pancreatic adenocarcinoma between January 2017 and December 2020.
Results:
Among 1,358 patients, 260 underwent surgery following neoadjuvant chemotherapy. Among 356 LAPC patients, 98 (27.5%) and 147 (35.1%) of 418 BRPC patients underwent surgery after neoadjuvant chemotherapy. Compared to resectable pancreatic cancer (resectable PC) with upfront surgery, both LAPC and BRPC exhibited higher rates of venous resection (28.6% vs. 49.0% vs. 4.0%), arterial resection (30.6% vs. 6.8% vs. 0.5%) and greater estimated blood loss (260.5 vs. 213.1 vs. 70.4 mL). However, hospital stay, readmission rates, and postoperative pancreatic fistula rates (grade B or C) did not differ significantly between LAPC, BRPC, and resectable PC. Overall and relapse-free survival did not differ significantly between LAPC and BRPC patients. The median overall survival was 37.3 months for LAPC and 37.0 months for BRPC. The median relapse-free survival was 22.7 months for LAPC and 26.0 months for BRPC.
Conclusion
Overall survival time and postoperative complications in LAPC patients who underwent curative resection following neoadjuvant chemotherapy showed similar results to those of BRPC patients. Further research is needed to identify specific sub-populations of LAPC patients who benefit most from conversion surgery and to minimize postoperative complications.
6.KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease
Mi Na KIM ; Ji Won HAN ; Jihyun AN ; Beom Kyung KIM ; Young-Joo JIN ; Seung-seob KIM ; Minjong LEE ; Han Ah LEE ; Yuri CHO ; Hee Yeon KIM ; Yu Rim SHIN ; Jung Hwan YU ; Moon Young KIM ; YoungRok CHOI ; Young Eun CHON ; Eun Ju CHO ; Eun Joo LEE ; Sang Gyune KIM ; Won KIM ; Dae Won JUN ; Seung Up KIM ;
Clinical and Molecular Hepatology 2024;30(suppl):s5-s105
7.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 5. Evaluation of Recurrence Risk Postoperatively and Initial Risk Stratification in Differentiated Thyroid Cancer 2024
Eun Kyung LEE ; Young Shin SONG ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Shin Je MOON ; Dong-Jun LIM ; Kyong Yeun JUNG ; Yun Jae CHUNG ; Chan Kwon JUNG ; Young Joo PARK ;
International Journal of Thyroidology 2024;17(1):68-96
The American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) staging classification of thyroid cancer can predict death but cannot determine the type and frequency of follow-up testing. Risk stratification is a concept proposed by the American Thyroid Association that uses additional prognostic factors that are not included in the AJCC/UICC classification, such as number or size of metastatic lymph nodes, genetic mutations, and vascular invasion in follicular cancer, to further refine the prognosis of thyroid cancer. The risk of recurrence was categorized as low, intermediate, and high risk, and the need for total thyroidectomy, radioiodine therapy, or thyroid-stimulating hormone suppression was determined depending on each risk level. This approach has been accepted worldwide, and the previous recommendations of the Korean Thyroid Association followed a similar line of thinking but these have been modified in the revised 2024 guidelines.For the revised initial risk stratification, after careful review of the results of the recent meta-analyses and large observational studies and after a multidisciplinary meeting, four major changes were made: 1) thyroid cancer was reclassified according to the World Health Organization (WHO) 2022 tumor classification system; 2) recurrence risk was stratified by combining encapsulated follicular variant papillary thyroid cancer, follicular thyroid cancer, and oncocytic thyroid cancer, which have similar recurrence risk and associated factors, into follicular-patterned tumor; 3) low-risk groups were defined as those with a known recurrence rate of ≤5%, high-risk groups were upgraded to those with a known recurrence rate of ≥30%, and intermediate-risk groups were those with a recurrence risk of 5–30%; and 4) the intermediate risk group had the recurrence rate presented according to various clinicopathological factors, mainly based on reports from Korea. Thus, it is recommended to evaluate the initial risk group by predicting the recurrence rate by combining each clinical factor in individual patients, rather than applying the recurrence rate caused by single risk factor.
8.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 7. Adjuvant External Beam Radiotherapy and Systemic Chemotherapy Following Thyroidectomy 2024
Shin Je MOON ; Ho-Cheol KANG ; Sun Wook KIM ; Won Gu KIM ; Dong Gyu NA ; Young Joo PARK ; Young Shin SONG ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Dong Yeob SHIN ;
International Journal of Thyroidology 2024;17(1):111-114
Surgical resection is typically the primary treatment for differentiated thyroid cancer (DTC), followed by radioactive iodine (RAI) and thyroid-stimulating hormone suppression therapies based on the cancer stage and risk of recurrence. Nevertheless, further treatment may be necessary for patients exhibiting persistent disease following RAI therapy, residual disease refractory to RAI, or unresectable locoregional lesions. This guideline discusses the role of external beam radiotherapy and chemotherapy following surgical resection in patients with DTC. External beam radiotherapy is ineffective if DTC has been entirely excised (Grade 2). Adjuvant external beam radiotherapy may be optionally performed in patients with incomplete surgical resection or frequently recurrent disease (Grade 2). In patients at high risk of recurrence following surgery and RAI therapy, adjuvant external beam radiotherapy may be optionally considered (Grade 3). However, external beam radiotherapy may increase the risk of serious adverse events after tyrosine kinase inhibitor therapy. Therefore, careful consideration is needed when prescribing external beam radiotherapy for patients planning to undergo tyrosine kinase inhibitor therapy. There is no evidence supporting the benefits of the routine use of adjuvant chemotherapy for DTC treatment (Grade 2).
9.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part I. Initial Management of Differentiated Thyroid Cancers - Chapter 6. Radioactive Iodine Treatment after Thyroidectomy 2024
Sohyun PARK ; Ari CHONG ; Ho-Cheol KANG ; Keunyoung KIM ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Ji-In BANG ; Youngduk SEO ; Young Shin SONG ; So Won OH ; Eun Kyung LEE ; Dong-Jun LIM ; Yun Jae CHUNG ; Chae Moon HONG ; Sang-Woo LEE ;
International Journal of Thyroidology 2024;17(1):97-110
The initial treatment for differentiated thyroid cancer includes appropriate surgery and radioactive iodine (RAI) therapy, followed by thyroid-stimulating hormone (TSH) suppression therapy as long-term management to prevent recurrence. RAI therapy following thyroidectomy has the three main purposes: remnant ablation, adjuvant therapy, and therapy for known disease. To optimize the goals and targets of RAI therapy, postoperative disease assessment, determination of recurrence risk, and consideration of various individual factors are necessary. The objectives of RAI therapy are determined based on the individual’s recurrence risk, and the administered activity of RAI is then determined according to these treatment objectives. Adequate stimulation of serum TSH is necessary before RAI therapy, and recombinant human TSH is widely used because of its advantage in reducing the risk of exacerbation of comorbidities associated with levothyroxine discontinuation and improving patients’ quality of life. Additionally, reducing iodine intake through appropriate low-iodine diet is necessary. Whole-body scans are conducted to assess the disease status after RAI therapy. If planar whole-body scans are inconclusive, additional single-photon emission computed tomography (SPECT)/CT imaging is recommended. Over the past decade, prospective randomized or retrospective clinical studies on the selection of candidates for RAI therapy, administered activity, methods of TSH stimulation, and advantages of SPECT/CT have been published. Based on these latest clinical research findings and recommendations from relevant overseas medical societies, this clinical practice guideline presents the indications and methods for administering RAI therapy after thyroidectomy.
10.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part II. Follow-up Surveillance after Initial Treatment 2024
Mijin KIM ; Ji-In BANG ; Ho-Cheol KANG ; Sun Wook KIM ; Dong Gyu NA ; Young Joo PARK ; Youngduk SEO ; Young Shin SONG ; So Won OH ; Sang-Woo LEE ; Eun Kyung LEE ; Ji Ye LEE ; Dong-Jun LIM ; Ari CHONG ; Yun Jae CHUNG ; Chae Moon HONG ; Min Kyoung LEE ; Bo Hyun KIM ;
International Journal of Thyroidology 2024;17(1):115-146
Based on the clinical, histopathological, and perioperative data of a patient with differentiated thyroid cancer (DTC), risk stratification based on their initial recurrence risk is a crucial follow-up (FU) strategy during the first 1–2 years after initial therapy. However, restratifiying the recurrence risk on the basis of current clinical data that becomes available after considering the response to treatment (ongoing risk stratification, ORS) provides a more accurate prediction of the status at the final FU and a more tailored management approach. Since the 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and DTC, the latest guidelines that include the National Comprehensive Cancer Network clinical practice and European Association for Medical Oncology guidelines have been updated to reflect several recent evidence in ORS and thyroid-stimulating hormone (TSH) suppression of DTC. The current clinical practice guideline was developed by extracting FU surveillance after the initial treatment section from the previous version of guidelines and updating it to reflect recent evidence. The current revised guideline includes recommendations for recent ORS, TSH target level based on risk stratification, FU tools for detection of recurrence and assessment of disease status, and long-term FU strategy for consideration of the disease status. These evidence-based recommendations are expected to avoid overtreatment and intensive FU of the majority of patients who will have a very good prognosis after the initial treatment of DTC patients, thereby ensuring that patients receive the most appropriate and effective treatment and FU options.

Result Analysis
Print
Save
E-mail