1.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
2.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
3.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
4.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
5.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
6.Analysis of Intraocular Lens Rotation during Combined Vitrectomy and Cataract Surgery
Sung Ha HWANG ; Hoseok MOON ; Dae Yeong LEE
Journal of Retina 2024;9(2):134-139
Purpose:
To evaluate the prevalence of intraocular lens rotation (IOL) and related factors during combined vitrectomy and cataract surgery.
Methods:
A university hospital, non-comparative pilot study. The medical records of patients who underwent combined vitrectomy and cataract surgery were retrospectively investigated. Surgical videos were analyzed to observe the degree and timing of rotation of IOL during vitrectomy. Scleral indentation and peripheral vitrectomy were started from 6 o’clock of the eyeball and proceeded counterclockwise, and the presence of rotation was defined when IOL rotated more than 2 hours (60 degrees).
Results:
A total of 181 eyes were enrolled in this study, and the rotation of IOL occurred in 13 eyes (7.2%). IOL rotation was observed in 11 out of 117 eyes (9.4%) using 1-piece IOL and 2 out of 64 eyes (3.1%) using 3-piece IOL, and the difference was not significant. The direction of IOL rotation was counterclockwise in 11 eyes (84.6%) and rotated during peripheral vitrectomy and scleral indentation in 12 eyes (92.3%).
Conclusions
Since the rotation of IOL may occur during combined vitrectomy and cataract surgery, the axis of astigmatism should be checked at the end of the operation when using toric IOL.
7.Clinical significance and outcomes of adult living donor liver transplantation for acute liver failure: a retrospective cohort study based on 15-year single-center experience
Geun-hyeok YANG ; Young-In YOON ; Shin HWANG ; Ki-Hun KIM ; Chul-Soo AHN ; Deok-Bog MOON ; Tae-Yong HA ; Gi-Won SONG ; Dong-Hwan JUNG ; Gil-Chun PARK ; Sung-Gyu LEE
Annals of Surgical Treatment and Research 2024;107(3):167-177
Purpose:
This study aimed to describe adult living donor liver transplantation (LDLT) for acute liver failure and evaluate its clinical significance by comparing its surgical and survival outcomes with those of deceased donor liver transplantation (DDLT).
Methods:
We retrospectively reviewed the medical records of 267 consecutive patients (161 LDLT recipients and 106 DDLT recipients) aged 18 years or older who underwent liver transplantation between January 2006 and December 2020.
Results:
The mean periods from hepatic encephalopathy to liver transplantation were 5.85 days and 8.35 days for LDLT and DDLT, respectively (P = 0.091). Among these patients, 121 (45.3%) had grade III or IV hepatic encephalopathy (living, 34.8% vs. deceased, 61.3%; P < 0.001), and 38 (14.2%) had brain edema (living, 16.1% vs. deceased, 11.3%; P = 0.269) before liver transplantation. There were no significant differences in in-hospital mortality (living, 11.8% vs. deceased, 15.1%; P = 0.435), 10-year overall survival (living, 90.8% vs. deceased, 84.0%; P = 0.096), and graft survival (living, 83.5% vs. deceased, 71.3%;P = 0.051). However, postoperatively, the mean intensive care unit stay was shorter in the LDLT group (5.0 days vs. 9.5 days, P < 0.001). In-hospital mortality was associated with vasopressor use (odds ratio [OR], 3.40; 95% confidence interval [CI], 1.45–7.96; P = 0.005) and brain edema (OR, 2.75; 95% CI, 1.16–6.52; P = 0.022) of recipient at the time of transplantation. However, LDLT (OR, 1.26; 95% CI, 0.59–2.66; P = 0.553) was not independently associated with in-hospital mortality.
Conclusion
LDLT is feasible for acute liver failure when organs from deceased donors are not available.
8.Differences in Type 2 Fiber Composition in the Vastus Lateralis and Gluteus Maximus of Patients with Hip Fractures
Jingwen TIAN ; Minchul SONG ; Kyu Jeong CHO ; Ho Yeop LEE ; Sang Hyeon JU ; Jung Ryul LIM ; Ha Thi NGA ; Thi Linh NGUYEN ; Ji Sun MOON ; Hyo Ju JANG ; Jung-Mo HWANG ; Hyon-Seung YI
Endocrinology and Metabolism 2024;39(3):521-530
Background:
Aging leads to sarcopenia, which is characterized by reduced muscle mass and strength. Many factors, including altered muscle protein turnover, diminished neuromuscular function, hormonal changes, systemic inflammation, and the structure and composition of muscle fibers, play a crucial role in age-related muscle decline. This study explored differences in muscle fiber types contributing to overall muscle function decline in aging, focusing on individuals with hip fractures from falls.
Methods:
A pilot study at Chungnam National University Hospital collected muscle biopsies from hip fracture patients aged 20 to 80 undergoing surgical treatment. Muscle biopsies from the vastus lateralis and gluteus maximus were obtained during hip arthroplasty or internal fixation. Handgrip strength, calf and thigh circumference, and bone mineral density were evaluated in individuals with hip fractures from falls. We analyzed the relationships between each clinical characteristic and muscle fiber type.
Results:
In total, 26 participants (mean age 67.9 years, 69.2% male) were included in this study. The prevalence of sarcopenia was 53.8%, and that of femoral and lumbar osteoporosis was 19.2% and 11.5%, respectively. Vastus lateralis analysis revealed an age-related decrease in type IIx fibers, a higher proportion of type IIa fibers in women, and an association between handgrip strength and type IIx fibers in men. The gluteus maximus showed no significant correlations with clinical parameters.
Conclusion
This study identified complex associations between age, sex, handgrip strength, and muscle fiber composition in hip fracture patients, offering insights crucial for targeted interventions combating age-related muscle decline and improving musculoskeletal health.
9.Comparison of nutritive composition, immunoglobulin and microbial community in the colostrum between Holstein and Jersey cows: an observational study in Korea
Jun-Sik EOM ; Dong-Hyun LIM ; Ha-Young CHOI ; Won-Je SUNG ; Tai-Young HUR ; Sang-Bum KIM ; Sung-Sill LEE ; Yea-Hwang MOON ; Eun-Tae KIM
Korean Journal of Veterinary Research 2024;64(2):e17-
This study examined the colostrum nutritive composition, immunoglobulin (Ig), and microbial community in Holstein and Jersey dairy cows according to the time after calving. The experiment used seven Holstein and three Jersey dairy cows. Colostrum was collected immediately after calf calving, 12, and 24 hours, and stored at −80°C until analysis. An analysis of the nutritive composition in colostrum was performed using LactoScop. The immune indicators were analyzed using an ELISA Kit, and the microbial community was assessed using a Macrogen Inc. The protein level was high in all colostrum samples from Holstein dairy cows compared with Jersey dairy cows, but there was no significant difference according to the time after calving. Immune index analysis revealed high IgG and IgA concentrations in the colostrum of Holstein cows immediately after calving and 12 and 24 hours after calving, but the differences were not significant. The microbial community at the genus level revealed Staphylococcus to be predominant at a high rate in the colostrum of Holstein dairy cows and Enterococcus in Jersey dairy cows 12 hours after calving. Pseudomonas was predominant at a high rate in the colostrum of Jersey lactating cows immediately and 12 hours after calving. Chryseobacterium was predominant at a high rate in Holstein dairy cows 12 and 24 hours after calving. In conclusion, these results are expected to be used as research data on the correlation between quality, immunity, and microbial community in the colostrum. In the future, beneficial microorganisms in the colostrum of domestic dairy cows can be used to improve the growth and immunity of Holstein and Jersey calves and assist in research related to postbiotics industrialization.
10.Recent Prevalence of and Factors Associated With Chronic Obstructive Pulmonary Disease in a Rapidly Aging Society: Korea National Health and Nutrition Examination Survey 2015–2019
Sang Hyuk KIM ; Hyun LEE ; Youlim KIM ; Chin Kook RHEE ; Kyung Hoon MIN ; Yong Il HWANG ; Deog Kyeom KIM ; Yong Bum PARK ; Kwang Ha YOO ; Ji-Yong MOON
Journal of Korean Medical Science 2023;38(14):e108-
Background:
The prevalence of chronic obstructive pulmonary disease (COPD) increases with age, and aging is an important risk factor for COPD development. In the era of global aging, demographic information about the prevalence of and factors associated with COPD are important to establish COPD care plans. However, limited information is available in rapidly aging societies, including Korea.
Methods:
We conducted a cross-sectional observational study using Korea National Health and Nutrition Examination Survey data from 2015–2019. We included 15,613 participants and analyzed trends of and factors associated with COPD.
Results:
During the study period, the overall prevalence of COPD was 12.9%. Over five years, the yearly prevalence of COPD was fairly constant, ranging from 11.5% to 13.6%. Among individuals aged ≥ 70 years, nearly one-third met COPD diagnostic criteria. In the multivariable analysis, age 70 years or older was the most strong factor associated with COPD (adjusted odds ratio [aOR], 17.86; 95% confidence interval [CI], 14.16–22.52; compared with age 40–49), followed by asthma (aOR, 3.39; 95% CI, 2.44–4.71), male sex (aOR, 2.64; 95% CI, 2.18–3.19), and current smokers (aOR, 2.60; 95% CI, 2.08–3.25). Additionally, exsmokers, low income, decreased forced expiratory volume in 1 second %pred, and a history of pulmonary tuberculosis were associated with COPD. On the other hand, body mass index (BMI) ≥ 25 kg/m 2 (aOR, 0.62; 95% CI, 0.54–0.71; compared with BMI 18.5–24.9 kg/m 2 ) had an inverse association with COPD.
Conclusion
Recent trends in the prevalence of COPD in South Korea are relatively stable.Approximately one-third of participants aged 70 years and older had COPD. Aging was the most important factor associated with COPD.

Result Analysis
Print
Save
E-mail