1.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
2.2025 Seoul Consensus on Clinical Practice Guidelines for Irritable Bowel Syndrome
Yonghoon CHOI ; Young Hoon YOUN ; Seung Joo KANG ; Jeong Eun SHIN ; Young Sin CHO ; Yoon Suk JUNG ; Seung Yong SHIN ; Cheal Wung HUH ; Yoo Jin LEE ; Hoon Sup KOO ; Kwangwoo NAM ; Hong Sub LEE ; Dong Hyun KIM ; Ye Hyun PARK ; Min Cheol KIM ; Hyo Yeop SONG ; Sung-Hoon YOON ; Sang Yeol LEE ; Miyoung CHOI ; Moo-In PARK ; In-Kyung SUNG ;
Journal of Neurogastroenterology and Motility 2025;31(2):133-169
Irritable bowel syndrome (IBS) is a chronic, disabling, and functional bowel disorder that significantly affects social functioning and reduces quality of life and increases social costs. The Korean Society of Neurogastroenterology and Motility published clinical practice guidelines on the management of IBS based on a systematic review of the literature in 2017, and planned to revise these guidelines in light of new evidence on the pathophysiology, diagnosis, and management of IBS. The current revised version of the guidelines is consistent with the previous version and targets adults diagnosed with or suspected of having IBS. These guidelines were developed using a combination of de novo and adaptation methods, with analyses of existing guidelines and discussions within the committee, leading to the identification of key clinical questions. Finally, the guidelines consisted of 22 recommendations, including 3 concerning the definition and risk factors of IBS, 4 regarding diagnostic modalities and strategies, 2 regarding general management, and 13 regarding medical treatment. For each statement, the advantages, disadvantages, and precautions were thoroughly detailed. The modified Delphi method was used to achieve expert consensus to adopt the core recommendations of the guidelines. These guidelines serve as a reference for clinicians (including primary care physicians, general healthcare providers, medical students, residents, and other healthcare professionals) and patients, helping them to make informed decisions regarding IBS management.
3.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
4.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
5.2025 Seoul Consensus on Clinical Practice Guidelines for Irritable Bowel Syndrome
Yonghoon CHOI ; Young Hoon YOUN ; Seung Joo KANG ; Jeong Eun SHIN ; Young Sin CHO ; Yoon Suk JUNG ; Seung Yong SHIN ; Cheal Wung HUH ; Yoo Jin LEE ; Hoon Sup KOO ; Kwangwoo NAM ; Hong Sub LEE ; Dong Hyun KIM ; Ye Hyun PARK ; Min Cheol KIM ; Hyo Yeop SONG ; Sung-Hoon YOON ; Sang Yeol LEE ; Miyoung CHOI ; Moo-In PARK ; In-Kyung SUNG ;
Journal of Neurogastroenterology and Motility 2025;31(2):133-169
Irritable bowel syndrome (IBS) is a chronic, disabling, and functional bowel disorder that significantly affects social functioning and reduces quality of life and increases social costs. The Korean Society of Neurogastroenterology and Motility published clinical practice guidelines on the management of IBS based on a systematic review of the literature in 2017, and planned to revise these guidelines in light of new evidence on the pathophysiology, diagnosis, and management of IBS. The current revised version of the guidelines is consistent with the previous version and targets adults diagnosed with or suspected of having IBS. These guidelines were developed using a combination of de novo and adaptation methods, with analyses of existing guidelines and discussions within the committee, leading to the identification of key clinical questions. Finally, the guidelines consisted of 22 recommendations, including 3 concerning the definition and risk factors of IBS, 4 regarding diagnostic modalities and strategies, 2 regarding general management, and 13 regarding medical treatment. For each statement, the advantages, disadvantages, and precautions were thoroughly detailed. The modified Delphi method was used to achieve expert consensus to adopt the core recommendations of the guidelines. These guidelines serve as a reference for clinicians (including primary care physicians, general healthcare providers, medical students, residents, and other healthcare professionals) and patients, helping them to make informed decisions regarding IBS management.
6.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
7.2025 Seoul Consensus on Clinical Practice Guidelines for Irritable Bowel Syndrome
Yonghoon CHOI ; Young Hoon YOUN ; Seung Joo KANG ; Jeong Eun SHIN ; Young Sin CHO ; Yoon Suk JUNG ; Seung Yong SHIN ; Cheal Wung HUH ; Yoo Jin LEE ; Hoon Sup KOO ; Kwangwoo NAM ; Hong Sub LEE ; Dong Hyun KIM ; Ye Hyun PARK ; Min Cheol KIM ; Hyo Yeop SONG ; Sung-Hoon YOON ; Sang Yeol LEE ; Miyoung CHOI ; Moo-In PARK ; In-Kyung SUNG ;
Journal of Neurogastroenterology and Motility 2025;31(2):133-169
Irritable bowel syndrome (IBS) is a chronic, disabling, and functional bowel disorder that significantly affects social functioning and reduces quality of life and increases social costs. The Korean Society of Neurogastroenterology and Motility published clinical practice guidelines on the management of IBS based on a systematic review of the literature in 2017, and planned to revise these guidelines in light of new evidence on the pathophysiology, diagnosis, and management of IBS. The current revised version of the guidelines is consistent with the previous version and targets adults diagnosed with or suspected of having IBS. These guidelines were developed using a combination of de novo and adaptation methods, with analyses of existing guidelines and discussions within the committee, leading to the identification of key clinical questions. Finally, the guidelines consisted of 22 recommendations, including 3 concerning the definition and risk factors of IBS, 4 regarding diagnostic modalities and strategies, 2 regarding general management, and 13 regarding medical treatment. For each statement, the advantages, disadvantages, and precautions were thoroughly detailed. The modified Delphi method was used to achieve expert consensus to adopt the core recommendations of the guidelines. These guidelines serve as a reference for clinicians (including primary care physicians, general healthcare providers, medical students, residents, and other healthcare professionals) and patients, helping them to make informed decisions regarding IBS management.
8.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
9.Development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program: a nationwide project to improve surgical quality and patient safety
Jeong-Moo LEE ; In Woong HAN ; Oh Chul KWON ; Hye Rim SEO ; Jipmin JUNG ; So Jeong YOON ; Ahram HAN ; Juhan LEE ; Soo Young LEE ; Hoseok SEO ; Wooil KWON ; Bang Wool EOM ; In-Seob LEE ; Ji Won PARK ; Hae Won LEE ; Ho Kyoung HWANG ; Suk-Hwan LEE ; Eung Jin SHIN ; Woo Yong LEE
Annals of Surgical Treatment and Research 2024;107(6):305-314
Purpose:
Improvements in surgical quality and patient safety are critical components of the healthcare system. Despite excellent cancer survival rates in Korea, there is a lack of standardized postoperative complication management systems.To address this gap, the Korean Surgical Society initiated the development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program.
Methods:
K-QIPS was successfully launched in 87 general hospitals. This nationwide surgical quality improvement program covers 5 major surgical fields: gastric surgery, colorectal surgery, hepatectomy and liver transplantation, pancreatectomy, and kidney transplantation.
Results:
Common and surgery-specific complication platforms will be developed, and the program will work toward the implementation of an artificial intelligence-based complication prediction system and the provision of evidence-based feedback to participating institutions. K-QIPS represents a significant step toward improving surgical quality and patient safety in Korea.
Conclusion
This program aims to reduce postoperative complications, mortality, and medical costs by providing a standardized platform for complication management and prediction. The successful implementation of this nationwide project may provide a good model for other countries that are required to improve surgical outcomes and patient care.
10.Development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program: a nationwide project to improve surgical quality and patient safety
Jeong-Moo LEE ; In Woong HAN ; Oh Chul KWON ; Hye Rim SEO ; Jipmin JUNG ; So Jeong YOON ; Ahram HAN ; Juhan LEE ; Soo Young LEE ; Hoseok SEO ; Wooil KWON ; Bang Wool EOM ; In-Seob LEE ; Ji Won PARK ; Hae Won LEE ; Ho Kyoung HWANG ; Suk-Hwan LEE ; Eung Jin SHIN ; Woo Yong LEE
Annals of Surgical Treatment and Research 2024;107(6):305-314
Purpose:
Improvements in surgical quality and patient safety are critical components of the healthcare system. Despite excellent cancer survival rates in Korea, there is a lack of standardized postoperative complication management systems.To address this gap, the Korean Surgical Society initiated the development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program.
Methods:
K-QIPS was successfully launched in 87 general hospitals. This nationwide surgical quality improvement program covers 5 major surgical fields: gastric surgery, colorectal surgery, hepatectomy and liver transplantation, pancreatectomy, and kidney transplantation.
Results:
Common and surgery-specific complication platforms will be developed, and the program will work toward the implementation of an artificial intelligence-based complication prediction system and the provision of evidence-based feedback to participating institutions. K-QIPS represents a significant step toward improving surgical quality and patient safety in Korea.
Conclusion
This program aims to reduce postoperative complications, mortality, and medical costs by providing a standardized platform for complication management and prediction. The successful implementation of this nationwide project may provide a good model for other countries that are required to improve surgical outcomes and patient care.

Result Analysis
Print
Save
E-mail