1.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
2.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
3.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
4.Development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program: a nationwide project to improve surgical quality and patient safety
Jeong-Moo LEE ; In Woong HAN ; Oh Chul KWON ; Hye Rim SEO ; Jipmin JUNG ; So Jeong YOON ; Ahram HAN ; Juhan LEE ; Soo Young LEE ; Hoseok SEO ; Wooil KWON ; Bang Wool EOM ; In-Seob LEE ; Ji Won PARK ; Hae Won LEE ; Ho Kyoung HWANG ; Suk-Hwan LEE ; Eung Jin SHIN ; Woo Yong LEE
Annals of Surgical Treatment and Research 2024;107(6):305-314
Purpose:
Improvements in surgical quality and patient safety are critical components of the healthcare system. Despite excellent cancer survival rates in Korea, there is a lack of standardized postoperative complication management systems.To address this gap, the Korean Surgical Society initiated the development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program.
Methods:
K-QIPS was successfully launched in 87 general hospitals. This nationwide surgical quality improvement program covers 5 major surgical fields: gastric surgery, colorectal surgery, hepatectomy and liver transplantation, pancreatectomy, and kidney transplantation.
Results:
Common and surgery-specific complication platforms will be developed, and the program will work toward the implementation of an artificial intelligence-based complication prediction system and the provision of evidence-based feedback to participating institutions. K-QIPS represents a significant step toward improving surgical quality and patient safety in Korea.
Conclusion
This program aims to reduce postoperative complications, mortality, and medical costs by providing a standardized platform for complication management and prediction. The successful implementation of this nationwide project may provide a good model for other countries that are required to improve surgical outcomes and patient care.
5.Development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program: a nationwide project to improve surgical quality and patient safety
Jeong-Moo LEE ; In Woong HAN ; Oh Chul KWON ; Hye Rim SEO ; Jipmin JUNG ; So Jeong YOON ; Ahram HAN ; Juhan LEE ; Soo Young LEE ; Hoseok SEO ; Wooil KWON ; Bang Wool EOM ; In-Seob LEE ; Ji Won PARK ; Hae Won LEE ; Ho Kyoung HWANG ; Suk-Hwan LEE ; Eung Jin SHIN ; Woo Yong LEE
Annals of Surgical Treatment and Research 2024;107(6):305-314
Purpose:
Improvements in surgical quality and patient safety are critical components of the healthcare system. Despite excellent cancer survival rates in Korea, there is a lack of standardized postoperative complication management systems.To address this gap, the Korean Surgical Society initiated the development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program.
Methods:
K-QIPS was successfully launched in 87 general hospitals. This nationwide surgical quality improvement program covers 5 major surgical fields: gastric surgery, colorectal surgery, hepatectomy and liver transplantation, pancreatectomy, and kidney transplantation.
Results:
Common and surgery-specific complication platforms will be developed, and the program will work toward the implementation of an artificial intelligence-based complication prediction system and the provision of evidence-based feedback to participating institutions. K-QIPS represents a significant step toward improving surgical quality and patient safety in Korea.
Conclusion
This program aims to reduce postoperative complications, mortality, and medical costs by providing a standardized platform for complication management and prediction. The successful implementation of this nationwide project may provide a good model for other countries that are required to improve surgical outcomes and patient care.
6.Development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program: a nationwide project to improve surgical quality and patient safety
Jeong-Moo LEE ; In Woong HAN ; Oh Chul KWON ; Hye Rim SEO ; Jipmin JUNG ; So Jeong YOON ; Ahram HAN ; Juhan LEE ; Soo Young LEE ; Hoseok SEO ; Wooil KWON ; Bang Wool EOM ; In-Seob LEE ; Ji Won PARK ; Hae Won LEE ; Ho Kyoung HWANG ; Suk-Hwan LEE ; Eung Jin SHIN ; Woo Yong LEE
Annals of Surgical Treatment and Research 2024;107(6):305-314
Purpose:
Improvements in surgical quality and patient safety are critical components of the healthcare system. Despite excellent cancer survival rates in Korea, there is a lack of standardized postoperative complication management systems.To address this gap, the Korean Surgical Society initiated the development of the Korean Quality Improvement Platform in Surgery (K-QIPS) program.
Methods:
K-QIPS was successfully launched in 87 general hospitals. This nationwide surgical quality improvement program covers 5 major surgical fields: gastric surgery, colorectal surgery, hepatectomy and liver transplantation, pancreatectomy, and kidney transplantation.
Results:
Common and surgery-specific complication platforms will be developed, and the program will work toward the implementation of an artificial intelligence-based complication prediction system and the provision of evidence-based feedback to participating institutions. K-QIPS represents a significant step toward improving surgical quality and patient safety in Korea.
Conclusion
This program aims to reduce postoperative complications, mortality, and medical costs by providing a standardized platform for complication management and prediction. The successful implementation of this nationwide project may provide a good model for other countries that are required to improve surgical outcomes and patient care.
7.Busulfan, Melphalan, and Etoposide (BuME) Showed an Equivalent Effect to Busulfan, Cyclophosphamide, and Etoposide (BuCE) as Conditioning Therapy for Autologous Stem Cell Transplantation in Patients with Relapsed or High-Risk Non-Hodgkin’s Lymphoma: A Multicenter Randomized Phase II Study bythe Consortium for Improving Survival of Lymphoma (CISL)
Kyoung Ha KIM ; Jae Hoon LEE ; Mark LEE ; Hoon-Gu KIM ; Young Rok DO ; Yong PARK ; Sung Yong OH ; Ho-Jin SHIN ; Won Seog KIM ; Seong Kyu PARK ; Jee Hyun KONG ; Moo-Rim PARK ; Deok-Hwan YANG ; Jae-Yong KWAK ; Hye Jin KANG ; Yeung-Chul MUN ; Jong-Ho WON
Cancer Research and Treatment 2023;55(1):304-313
Purpose:
High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is the standard management for relapsed or high-risk non-Hodgkin’s lymphoma (NHL). We reported the busulfan, melphalan, and etoposide (BuME) conditioning regimen was effective in patients with relapsed or high-risk NHL. Moreover, the busulfan, cyclophosphamide, and etoposide (BuCE) conditioning regimen has been used widely in ASCT for NHL. Therefore, based on these encouraging results, this randomized phase II multicenter trial compared the outcomes of BuME and BuCE as conditioning therapies for ASCT in patients with NHL.
Materials and Methods:
Patients were randomly assigned to receive either BuME (n=36) or BuCE (n=39). The BuME regimen was comprised of busulfan (3.2 mg/kg/day, intravenously) administered on days –7, –6, and –5, etoposide (400 mg/m2 intravenously) on days –5 and –4, and melphalan (50 mg/m2/day intravenously) on days –3 and –2. The BuCE regimen was comprised of busulfan (3.2 mg/kg/day intravenously) on days –7, –6, and –5, etoposide (400 mg/m2/day intravenously) on days –5 and –4, and cyclophosphamide (50 mg/kg/day intravenously) on days –3 and –2. The primary endpoint was 2-year progression-free survival (PFS).
Results:
Seventy-five patients were enrolled. Eleven patients (30.5%) in the BuME group and 13 patients (33.3%) in the BuCE group had disease progression or died. The 2-year PFS rate was 65.4% in the BuME group and 60.6% in the BuCE group (p=0.746). There were no non-relapse mortalities within 100 days after transplantation.
Conclusion
There were no significant differences in PFS between the two groups. Therefore, busulfan-based conditioning regimens, BuME and BuCE, may be important treatment substitutes for the BCNU-containing regimens.
8.Therapeutic effects of stiripentol against ischemia-reperfusion injury in gerbils focusing on cognitive deficit, neuronal death, astrocyte damage and blood brain barrier leakage in the hippocampus
Myoung Cheol SHIN ; Tae-Kyeong LEE ; Jae-Chul LEE ; Hyung Il KIM ; Chan Woo PARK ; Jun Hwi CHO ; Dae Won KIM ; Ji Hyeon AHN ; Moo-Ho WON ; Choong-Hyun LEE
The Korean Journal of Physiology and Pharmacology 2022;26(1):47-57
Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.
9.Safety and efficacy of nilotinib in adult patients with chronic myeloid leukemia: a post-marketing surveillance study in Korea
Seo-Yeon AHN ; Sang Kyun SON ; Gyu Hyung LEE ; Inho KIM ; June-Won CHEONG ; Won Sik LEE ; Byung Soo KIM ; Deog-Yeon JO ; Chul Won JUNG ; Chu Myoung SEONG ; Jae Hoon LEE ; Young Jin YUH ; Min Kyoung KIM ; Hun-Mo RYOO ; Moo-Rim PARK ; Su-Hee CHO ; Hoon-Gu KIM ; Dae Young ZANG ; Jinny PARK ; Hawk KIM ; Seryeon LEE ; Sung-Hyun KIM ; Myung Hee CHANG ; Ho Sup LEE ; Chul Won CHOI ; Jihyun KWON ; Sung-Nam LIM ; Suk-Joong OH ; Inkyung JOO ; Dong-Wook KIM
Blood Research 2022;57(2):144-151
Background:
Nilotinib is a tyrosine kinase inhibitor approved by the Ministry of Food and Drug Safety for frontline and 2nd line treatment of Philadelphia chromosome-positive chronic myeloid leukemia (Ph+ CML). This study aimed to confirm the safety and efficacy of nilotinib in routine clinical practice within South Korea.
Methods:
An open-label, multicenter, single-arm, 12-week observational post-marketing surveillance (PMS) study was conducted on 669 Korean adult patients with Ph + CML from December 24, 2010, to December 23, 2016. The patients received nilotinib treatment in routine clinical practice settings. Safety was evaluated by all types of adverse events (AEs) during the study period, and efficacy was evaluated by the complete hematological response (CHR) and cytogenetic response.
Results:
During the study period, AEs occurred in 61.3% (410 patients, 973 events), adverse drug reactions (ADRs) in 40.5% (271/669 patients, 559 events), serious AEs in 4.5% (30 patients, 37 events), and serious ADRs in 0.7% (5 patients, 8 events). Furthermore, unexpected AEs occurred at a rate of 6.9% (46 patients, 55 events) and unexpected ADRs at 1.2% (8 patients, 8 events). As for the efficacy results, CHR was achieved in 89.5% (442/494 patients), and minor cytogenetic response or major cytogenetic response was achieved in 85.8% (139/162 patients).
Conclusion
This PMS study shows consistent results in terms of safety and efficacy compared with previous studies. Nilotinib was well tolerated and efficacious in adult Korean patients with Ph + CML in routine clinical practice settings.
10.Anti‑stress effects of Fameyes in in vitro and in vivo models of stresses
Junkee HONG ; Tae‑Kyeong LEE ; In Hye KIM ; Seungah LEE ; Byung‑Ju JEON ; Jiwon LEE ; Moo‑Ho WON ; Sungsu KIM
Laboratory Animal Research 2022;38(4):337-344
Background:
Fameyes (a mixture of Clematis mandshurica Rupr. extract (CMRE) and Erigeron annuus (L.) Pers. extract (EAPE)) containing scutellarin and chlorogenic acid as major components has been reported to relieve mental stress in human subjects, which is reflected in improved scores in psychometric tests measuring levels of depression, anxi‑ ety, well-being, and mental fitness. The aim of this study was to examine the anti-stress activity of Fameyes and to investigate the mechanisms of the anti-stress activity using in vitro and in vivo models of stresses.
Results:
First, we tested the effect of Fameyes on corticosterone-induced cytotoxicity in SH-SY5Y cells (human neurofibroma cell lines). Corticosterone induced apoptosis and decreased cell viability and mitochondrial membrane potential, but treatment with Fameyes inhibited these cytotoxic effects in a dose-dependent manner. However, CMRE and EAPE (components of Fameyes) did not inhibit the cytotoxic effect of corticosterone individually. Next, we tested the effects of Fameyes on rats that were exposed to different kinds of stresses for four weeks. When the stressed rats were treated with Fameyes, their immobility time in forced swim and tail suspension tests decreased. A reduction was also observed in the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone. Furthermore, upon oral administration of Fameyes, serum serotonin levels increased. These in vitro and in vivo results support the anti-stress effects of Fameyes.
Conclusions
In vitro experiments showed anti-stress effects of Fameyes in cell viability, apoptosis, and mitochon‑ drial membrane potential. In addition, in vivo experiments using rats showed anti-stress effects of Fameyes in blood and tissue levels of ACTH, corticosterone, and serotonin, as well as the immobility time in the forced swim and tail sus‑ pension tests. However, we did not specifically investigate which ingredient or ingredients showed anti-stress effects, although we reported that Fameyes contained chlorogenic acid and scutellarin major ingredients.

Result Analysis
Print
Save
E-mail