1.Effect of Rehmanniae Radix on depression-like behavior and hippocampal monoamine neurotransmitters of chronic unpredictable mild stress model rats.
Ping TIAN ; Wei ZHANG ; Kai-Yan LI ; Hong-Wei LI ; Kai MA ; De-En HAN
China Journal of Chinese Materia Medica 2022;47(17):4691-4697
To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.
3,4-Dihydroxyphenylacetic Acid/pharmacology*
;
Animals
;
Antidepressive Agents/therapeutic use*
;
Chromatography, Liquid
;
Depression/drug therapy*
;
Disease Models, Animal
;
Dopamine
;
Eosine Yellowish-(YS)/pharmacology*
;
Hematoxylin/pharmacology*
;
Hippocampus/metabolism*
;
Homovanillic Acid/pharmacology*
;
Hydroxyindoleacetic Acid/metabolism*
;
Methoxyhydroxyphenylglycol/pharmacology*
;
Monoamine Oxidase/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Norepinephrine/pharmacology*
;
Plant Extracts
;
Rats
;
Rehmannia/chemistry*
;
Serotonin/metabolism*
;
Serotonin Plasma Membrane Transport Proteins/pharmacology*
;
Stress, Psychological/metabolism*
;
Tandem Mass Spectrometry
;
Tryptophan Hydroxylase/metabolism*
2.Role of hyperglycemia-induced 5-hydroxytryptamine degradation of hepatic stellate cells in hepatic inflammation and fibrosis induced by type 2 diabetes mellitus.
Xiu Rui LIANG ; Xue Chun SHAN ; Jing GUAN ; Rui ZHANG ; Jing YANG ; Yi ZHANG ; Jia Qi JIN ; Yu Xin ZHANG ; Fan XU ; Ji Hua FU
Journal of Peking University(Health Sciences) 2022;54(6):1141-1150
OBJECTIVE:
To explore the role of 5-hydroxytryptamine (5-HT) in type 2 diabetes mellitus (T2DM)-related hepatic inflammation and fibrosis.
METHODS:
Male C57BL/6J mice were used to establish T2DM model by high-fat diet feeding combined with intraperitoneal injection of streptozotocin. Then, the mice with hyperglycemia were still fed with high-fat diet for nine weeks, and treated with or without 5-HT2A receptor (5-HT2AR) antagonist sarpogrelate hydrochloride (SH) and 5-HT synthesis inhibitor carbidopa (CDP) (alone or in combination). To observe the role of 5-HT in the myofibroblastization of hepa-tic stellate cells (HSCs), human HSCs LX-2 were exposed to high glucose, and were treated with or without SH, CDP or monoamine oxidase A (MAO-A) inhibitor clorgiline (CGL). Hematoxylin & eosin and Masson staining were used to detect the pathological lesions of liver tissue section, immunohistochemistry and Western blot were used to analyze protein expression, biochemical indicators were measured by ELISA or enzyme kits, and levels of intracellular reactive oxygen species (ROS) were detected by fluorescent probe.
RESULTS:
There were up-regulated expressions of 5-HT2AR, 5-HT synthases and MAO-A, and elevated levels of 5-HT in the liver of the T2DM mice. In addition to reduction of the hepatic 5-HT levels and MAO-A expression, treatment with SH and CDP could effectively ameliorate liver lesions in the T2DM mice, both of which could ameliorate hepatic injury and steatosis, significantly inhibit the increase of hepatic ROS (H2O2) levels to alleviate oxidative stress, and markedly suppress the production of transforming growth factor β1 (TGF-β1) and the development of inflammation and fibrosis in liver. More importantly, there was a synergistic effect between SH and CDP. Studies on LX-2 cells showed that high glucose could induce up-regulation of 5-HT2AR, 5-HT synthases and MAO-A expression, increase intracellular 5-HT level, increase the production of ROS, and lead to myofibroblastization of LX-2, resulting in the increase of TGF-β1 synthesis and production of inflammatory and fibrosis factors. The effects of high glucose could be significantly inhibited by 5-HT2AR antagonist SH or be markedly abolished by mitochondrial 5-HT degradation inhibitor CGL. In addition, SH significantly suppressed the up-regulation of 5-HT synthases and MAO-A induced by high glucose in LX-2.
CONCLUSION
Hyperglycemia-induced myofibroblastization and TGF-β1 production of HSCs, which leads to hepatic inflammation and fibrosis in T2DM mice, is probably due to the up-regulation of 5-HT2AR expression and increase of 5-HT synthesis and degradation, resulting in the increase of ROS production in mitochondria. Among them, 5-HT2AR is involved in the regulation of 5-HT synthases and MAO-A expression.
Male
;
Mice
;
Humans
;
Animals
;
Hepatic Stellate Cells/pathology*
;
Transforming Growth Factor beta1/pharmacology*
;
Serotonin/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diabetes Mellitus, Type 2/complications*
;
Hydrogen Peroxide/metabolism*
;
Mice, Inbred C57BL
;
Liver Cirrhosis/etiology*
;
Hyperglycemia/pathology*
;
Monoamine Oxidase/metabolism*
;
Inflammation
;
Glucose/metabolism*
;
Cytidine Diphosphate/pharmacology*
3.Postpartum depression: association with genetic polymorphisms of noradrenaline metabolic enzymes and the risk factors.
Jiahui MA ; Zhengdong HUANG ; Saiying WANG ; Shanshan ZHENG ; Kaiming DUAN
Journal of Southern Medical University 2019;39(1):57-62
OBJECTIVE:
To investigate the association of genetic polymorphisms of norepinephrine metabolizing enzymes with postpartum depression and analyze the risk factors for postpartum depression in women following cesarean section.
METHODS:
A total of 591 Chinese woman of Han Nationality undergoing caesarean section were enrolled in this study. The diagnosis of postpartum depression was established for an Edinburgh Postnatal Depression Scale (EPDS) score ≥9. For all the women without antepartum depression, the genotypes of catechol-O-methyltransferase (COMT; at 5 sites including rs2020917 and rs737865) and monoamine oxidase A (rs6323) were determined using Sequenom Mass Array single nucleotide polymorphism (SNP) analysis. We analyzed the contribution of the genetic factors (SNPs, linkage disequilibrium and haplotype) to postpartum depression and performed logistic regression analysis to identify all the potential risk factors for postpartum depression and define the interactions between the genetic and environmental factors.
RESULTS:
The incidence of postpartum depression was 18.1% in this cohort. Univariate analysis suggested that COMT polymorphism at rs2020917 (TT genotype) and rs737865 (GG genotype) were significantly correlated with the occurrence of postpartum depression ( < 0.05). Logistic regression analysis showed that COMT polymorphism at rs2020917 (TT genotype) and rs737865 (GG genotype), severe stress during pregnancy, and domestic violence were the risk factors for postpartum depression ( < 0.05); no obvious interaction was found between the genetic polymorphisms and the environmental factors in the occurrence of postpartum depression.
CONCLUSIONS
The rs2020917TT and rs737865GG genotypes of COMT, stress in pregnancy, and domestic violence are the risk factors for postpartum depression.
Catechol O-Methyltransferase
;
genetics
;
Cesarean Section
;
adverse effects
;
Depression, Postpartum
;
diagnosis
;
enzymology
;
genetics
;
Domestic Violence
;
psychology
;
Female
;
Gene-Environment Interaction
;
Genotype
;
Haplotypes
;
Humans
;
Linkage Disequilibrium
;
Monoamine Oxidase
;
genetics
;
Norepinephrine
;
metabolism
;
Polymorphism, Single Nucleotide
;
Postoperative Complications
;
diagnosis
;
enzymology
;
genetics
;
Pregnancy
;
Pregnancy Complications
;
etiology
;
psychology
;
Risk Factors
;
Stress, Psychological
4.Differences in dietary intakes, body compositions, and biochemical indices between metabolically healthy and metabolically abnormal obese Korean women
Nutrition Research and Practice 2019;13(6):488-497
BACKGROUND/OBJECTIVES: There are various factors that affect metabolic abnormalities related to obesity. The purpose of this study is to analyze the differences in dietary intakes and body compositions of obese women according to metabolic risks and to classify them as metabolically healthy obese (MHO) or metabolically abnormal obese (MAO). SUBJECTS/METHODS: This study was conducted on 59 obese Korean women aged 19 to 60 years. NCEP-ATPIII criteria were applied and the women classified as MHO (n = 45) or MAO (n = 14). Body composition of each subject was measured by using dual-energy x-ray absorptiometry (DEXA). Three-day food records were used to analyze dietary intake. Eating habits and health-related behaviors were determined through questionnaires. Indirect calorimetry was used to measure resting metabolic rate and respiratory rate. RESULTS: The average age of the subjects was 43.7 years. The analysis of body composition according to phenotype revealed significantly higher body fat mass (P < 0.05), arm fat mass (P < 0.05), and android fat mass (P < 0.05), as measured by DEXA, in the MAO group than in the MHO group. There was no significant difference in the dietary intake of the two groups. However, eating behaviors differed. Compared to the MHO group, the MAO women had a shorter meal time (less than 10 minutes), a preference of oily foods, and a tendency to eat until full. Therefore, the eating habits of MHO women were more positive than those of MAO women. CONCLUSIONS: The results suggest that fat distribution in each body region affects various metabolic abnormalities. A high level of arm fat mass in obese Korean women may increase metabolic risk. In addition, eating habits of obese Korean women are considered to be environmental factors affecting the metabolic phenotype of obese Korean women.
Absorptiometry, Photon
;
Adipose Tissue
;
Arm
;
Basal Metabolism
;
Body Composition
;
Body Regions
;
Calorimetry, Indirect
;
Diet
;
Eating
;
Feeding Behavior
;
Female
;
Humans
;
Meals
;
Methyltestosterone
;
Monoamine Oxidase
;
Obesity
;
Phenotype
;
Respiratory Rate
5.Fatty Acid Increases cAMP-dependent Lactate and MAO-B-dependent GABA Production in Mouse Astrocytes by Activating a G(αs) Protein-coupled Receptor.
NaHye LEE ; Moonsun SA ; Yu Ri HONG ; C Justin LEE ; JaeHyung KOO
Experimental Neurobiology 2018;27(5):365-376
Medium-chain fatty acids (MCFAs) are mostly generated from dietary triglycerides and can penetrate the blood-brain barrier. Astrocytes in the brain use MCFAs as an alternative energy source. In addition, MCFAs have various regulatory and signaling functions in astrocytes. However, it is unclear how astrocytes sense and take up MCFAs. This study demonstrates that decanoic acid (DA; C10), a saturated MCFA and a ligand of G(αs) protein-coupled receptors (G(αs)-GPCRs), is a signaling molecule in energy metabolism in primary astrocytes. cAMP synthesis and lactate release were increased via a putative G(αs)-GPCR and transmembrane adenylyl cyclase upon short-term treatment with DA. By contrast, monoamine oxidase B-dependent gamma-aminobutyric acid (GABA) synthesis was increased in primary cortical and hypothalamic astrocytes upon long-term treatment with DA. Thus, astrocytes respond to DA by synthesizing cAMP and releasing lactate upon short-term treatment, and by synthesizing and releasing GABA upon long-term treatment, similar to reactive astrocytes. Our data suggest that astrocytes in the brain play crucial roles in lipid-sensing via GPCRs and modulate neuronal metabolism or activity by releasing lactate via astrocyte-neuron lactate shuttle or GABA to influence neighboring neurons.
Adenylyl Cyclases
;
Animals
;
Astrocytes*
;
Blood-Brain Barrier
;
Brain
;
Energy Metabolism
;
Fatty Acids
;
gamma-Aminobutyric Acid*
;
Lactic Acid*
;
Metabolism
;
Mice*
;
Monoamine Oxidase
;
Neurons
;
Triglycerides
6.Effects of Lonicera Japonica flavone on immunomodulation in mice.
Jian-hui PI ; Juan TAN ; Zhao-tun HU ; De-biao XIANG
Chinese Journal of Applied Physiology 2015;31(1):89-92
OBJECTIVETo study immunomodulating activity of Lonicera Japonica flavone by investigating immune enzymatic activity of serum and antoxidized activity of lymphoid organs in mice.
METHODSFifty KM mice were randomly divided into control group, model group, low dose group, middle dose group and high dose group(n = 10), respectively. And low dose group, middle dose group and high dose group were given Lonicera Japonica flavone with 100 mg/kg, 200 mg/kg and 400 mg/kg every day, respectively, while control group and model group were administered with NS. After continuously giving drug 7 weeks, other groups were injected with Dexamethasome (Dex: 25 mg /kg) for 3 days by subcutaneous injection, but the control group were treated with NS. And after giving Lonicera Japonica flavone 1 week simultaneously, organ indexes , the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) and lysozyme (LSZ) in serum , and the content of monoamine oxidase (MAO), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD) and malondialdehyde (MDA) in lymphoid organs in mice were tested, respectively.
RESULTSLonicera Japonica flavone could significantly improve the organ indexes, and significantly improve the activity of ACP, AKP and LSZ in serum, and significantly improve the contents of T-AOC and SOD, but reduce that of MAO and MDA in lymphoid organs in immunosuppressed mice.
CONCLUSIONIonicera Japonica flavone can significantly improve the activity of immune enzyme in serum and the antioxidized activity of lymphoid organs in mice. It suggests that Ionicera Japonica flavone has a good immunomodulatory effects.
Acid Phosphatase ; blood ; Alkaline Phosphatase ; blood ; Animals ; Antioxidants ; metabolism ; Flavones ; pharmacology ; Immunomodulation ; Lonicera ; chemistry ; Malondialdehyde ; metabolism ; Mice ; Monoamine Oxidase ; metabolism ; Muramidase ; blood ; Superoxide Dismutase ; metabolism
7.Increasing activity of a monoamine oxidase by random mutation.
Xuejun CHEN ; Yuanhui MA ; Jianhua SHAO ; Dunyue LAI ; Zhiguo WANG ; Zhenming CHEN
Chinese Journal of Biotechnology 2014;30(1):109-118
The monoamine oxidase mutant A-1 (F210V/L213C) from Aspergillus niger showed some catalytic activity on mexiletine. To futher improve its activity, the mutant was subjected to directed evolution with MegaWHOP PCR (Megaprimer PCR of Whole Plasmid) and selection employing a high-throughput agar plate-based colorimetric screen. This approach led to the identification of a mutant ep-1, which specific activity was 189% of that for A-1. The ep-1 also showed significantly improved enantioselectivity, with the E value increased from 101 to 282; its kinetic k(cat)/K(m) value increased from 0.001 51 mmol/(L x s) to 0.002 89 mmol/(L x s), suggesting that catalytic efficiency of ep-1 had been improved. The mutant showed obviously higher specific activities on 7 of all tested 11 amines substrates, and the others were comparable. Sequence analysis revealed that there was a new mutation T162A on ep-1. The molecular dynamics simulation indicated that T162A may affect the secondary structure of the substrate channel and expand the binding pocket.
Aspergillus niger
;
enzymology
;
Catalysis
;
Kinetics
;
Monoamine Oxidase
;
genetics
;
metabolism
;
Mutation
;
Polymerase Chain Reaction
;
Protein Engineering
;
Protein Structure, Secondary
;
Substrate Specificity
8.Analgesic effect of ferulic acid on CCI mice: behavior and neurobiological analysis.
Wei-Hong LV ; Lu ZHANG ; Shu-Juan WU ; Sai-Zhen CHEN ; Xin-Bo ZHU ; Jian-Chun PAN
China Journal of Chinese Materia Medica 2013;38(21):3736-3741
To study the analgesic effect of chronic administration with ferulic acid, and preliminarily discuss its mechanism. Thermal hyperalgesia and mechanical allodynia tests were conducted to observe the analgesic effect of chronic administration with ferulic acid on CCI mice. The neurochemical detection method was applied to observe the effect chronic administration with ferulic acid on monoamine neurotransmitter and monoamine oxidase activity. Compared with the normal group, CCI mice showed notable reduction in heat sensation and nociceptive threshold in and mechanical allodynia. Ferulic acid (10, 20, 40 and 80 mg x kg(-1), po) could significantly reverse the situations. In an in-depth study, we found that the reason for these results was that ferulic acid was dose-dependent in increasing 5-HT and NE levels in hippocampus, frontal cortex and amygdale and could inhibit MAO-A activity in mouse brains. These results showed that ferulic acid has the analgesic effect. Its mechanism may be related to the inhibition of monoamine oxidase activity and the increase in monoamine neurotransmitter in mouse brains.
Analgesics
;
administration & dosage
;
Animals
;
Behavior, Animal
;
drug effects
;
Coumaric Acids
;
administration & dosage
;
Humans
;
Hyperalgesia
;
drug therapy
;
psychology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Monoamine Oxidase
;
metabolism
;
Neurotransmitter Agents
;
metabolism
;
Sciatic Nerve
;
drug effects
;
injuries
;
Sciatic Neuropathy
;
drug therapy
;
metabolism
;
psychology
9.Design of acetylcholinesterase inhibitor for Alzheimer's disease therapy: from multi-binding site inhibitors to multi-target directed ligands.
Wen-Chao YANG ; Qi SUN ; Ning-Xi YU ; Xiao-Lei ZHU ; Guang-Fu YANG
Acta Pharmaceutica Sinica 2012;47(3):313-321
Alzheimer's disease (AD) is a complex neurodegenerative disorder which seriously causes the dementia in elderly people and afflicts millions of people worldwide. Drug discovery for Alzheimer's disease therapy has been a hot research area and a big challenge, in which development of acetylcholinesterase (AChE) inhibitors design was the most active and some AChE inhibitors are commercially available for AD medication already. However, practical using of commercial AChE inhibitors showed their limited usefulness and related adverse effects. Thus, it is extremely urgent to find novel AChE inhibitors with higher potency and less adverse effects. Based on the accurate crystallographic studies about AChE, strategies for multi-binding site AChE inhibitors have been formed, followed by design of the multi-target directed ligands. In this review, the structures and binding modes of commercial AChE inhibitors were briefly discussed, together with the development of AChE inhibitor design for AD therapy: from multi-binding site inhibitors to multi-target directed ligands.
Acetylcholinesterase
;
chemistry
;
metabolism
;
Alzheimer Disease
;
drug therapy
;
Amyloid Precursor Protein Secretases
;
antagonists & inhibitors
;
Amyloid beta-Peptides
;
metabolism
;
Animals
;
Aspartic Acid Endopeptidases
;
antagonists & inhibitors
;
Binding Sites
;
Butyrylcholinesterase
;
chemistry
;
metabolism
;
Cholinesterase Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
;
therapeutic use
;
Drug Design
;
Humans
;
Ligands
;
Monoamine Oxidase Inhibitors
;
chemical synthesis
;
chemistry
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
Structure-Activity Relationship
10.Effects of ligustrazine on the mitochondrial structure and functions in the process myocardial hypertrophy.
Yan YU ; Shuo-Ren WANG ; Yi-Kun SUN
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(5):661-665
OBJECTIVETo explore changes of mitochondrial structure and functions, as well as the protection of ligustrazine in the process of myocardial hypertrophy.
METHODSNeonatal myocardial cells were isolated and cultured with angiotensin II (Ang II) for 72 or 96 h. The total protein content was detected using BCA method. The cell diameter was measured by inverted microscope, by which to reflect the proliferation situation of cardiomyocytes. The mitochondrial membrane potential (MMP) was measured by fluorescence microscope. The mitochondrial monoamine oxidase (MAO) activity was detected by spectrophotometer. The mitochondrial cytochrome oxidase (COX) activity and the mitochondrial damage percentage were detected by microplate reader, by which to reflect the damage of mitochondrial outer membrane's structure and the membranes' function. Also, cells were treated with ligustrazine and losartan and then the pharmacological effects on the mitochondrial structure and functions in the myocardial cells treated with Ang II were observed.
RESULTSAt 72 h and 96 h, when compared with the blank group, cells treated with Ang II had increased total protein content (P < 0.01) and enlarged diameter (P < 0.01). Treated with Ang II, the MAO activity and the outer membrane damage percentage of myocardial cells significantly increased (P < 0.01), and mitochondrial COX activity and the mitochondrial MMP significantly decreased (P < 0.01). Compared with the model group at the same time period, ligustrazine significantly reduced myocardial cells' total protein content and myocardial cell diameter, and significantly decreased myocardial cells' MAO activity, increased mitochondrial COX activity, improved the outer membrane damage percentage and inner membrane MMP at 72 and 96 h, all showing statistical difference (P < 0.01, P < 0.05).
CONCLUSIONSDuring the process of myocardial hypertrophy existed the damage to the mitochondrial structure and functions. Ligustrazine protected the mitochondrial structure and functions of the myocardial cells in reversing Ang II induced myocardial cell hypertrophy.
Angiotensin II ; adverse effects ; Animals ; Cardiomyopathy, Hypertrophic ; chemically induced ; metabolism ; pathology ; Cells, Cultured ; Electron Transport Complex IV ; metabolism ; Mitochondria, Heart ; drug effects ; enzymology ; Monoamine Oxidase ; metabolism ; Myocytes, Cardiac ; drug effects ; metabolism ; pathology ; Pyrazines ; pharmacology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail