1.Molecular epidemiology of clinical isolation of carbapenem-resistant Enterobacterales and application of carbapenemase inhibitor enhancement test.
Hongling LI ; Yiming ZHONG ; Qun YAN ; Wen'en LIU ; Xianghui LIANG
Journal of Central South University(Medical Sciences) 2023;48(8):1210-1216
OBJECTIVES:
The prevalence of carbapenem-resistant Enterobacterales (CRE) presents a significant challenge in clinical anti-infective treatment. This study aims to investigate drug resistance and the molecular epidemiological characteristics of CRE in our area. Additionally, we seek to evaluate practicality of utilizing carbapenemase inhibitor enhancement test in clinical laboratory.
METHODS:
Non-repeated CREs isolated from clinical specimens at Xiangya Hospital, Central South University, were collected. Minimum inhibitory concentration (MIC) combined with Kirby-Bauer (KB) assay was used to detect the drug susceptibility of the strains, and 13 carbapenemase-producing genes were detected by PCR. The phenotype of 126 strains of carbapenemase-producing Enterobacterales identified by PCR was detected by the carbapenemase inhibitor enhancement test to understand the agreement between the method and the gold standard PCR results.
RESULTS:
Among 704 CRE strains examined, we observed significant drug resistance in 501 strains dentified as carbapenemase-producing Enterobacterales (CPE). Klebsiella pneumoniae was the predominant CPE strain, followed by Enterobacter cloacae and Escherichia coli. A total of 9 carbapenemase types were detected, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron- encoded metallo-β-lactamases (VIM), imipenemase (IMP), oxacillinase-48 (OXA-48), and rare imipenem-hydrolyzing β-lactamase (IMI), adelaide imipenemase (AIM), Bicêtre carbapenemase (BIC), and guiana extended-spectrum β-lactamase (GES). The detection rate of KPC serine carbapenemase was 61.7% (309/501). The carbapenemase inhibitor enhancement test exhibited a 100% consistency rate for the strains producing Class A serine carbapenemase and/or Class B metallo-β-lactamases.
CONCLUSIONS
CRE strains in Changsha, Hunan, China, are wide distribution and exhibit carbapenemase production. The main mechanism of carbapenem resistance in these bacterias is predominatly attributed to the production of KPC serine carbapenemase. The presence of GES and IMI genes carried by Enterobacterales has been detected for the first time in this region. The carbapenemase inhibitor enhancement test has been proven to be an accurate method for detecting CRE producing Class A serine carbapenemase and/or Class B metallo-β-lactamases. This method offers simpicity of operation and ease of results interpretation, making it weel-suited meeting the clinical microbiology laboratory's reguirements for the detection of serine carbapenemase and metallo-β-lactamases.
Humans
;
Carbapenems/pharmacology*
;
Molecular Epidemiology
;
Bacterial Proteins/analysis*
;
beta-Lactamases/analysis*
;
Klebsiella pneumoniae/genetics*
;
Escherichia coli
;
Microbial Sensitivity Tests
;
Serine
;
Anti-Bacterial Agents/pharmacology*
2.A Core Genome Multilocus Sequence Typing Scheme for Proteus mirabilis.
Sheng Lin CHEN ; Yu Tong KANG ; Yi He LIANG ; Xiao Tong QIU ; Zhen Jun LI
Biomedical and Environmental Sciences 2023;36(4):343-352
OBJECTIVE:
A core genome multilocus sequence typing (cgMLST) scheme to genotype and identify potential risk clonal groups (CGs) in Proteus mirabilis.
METHODS:
In this work, we propose a publicly available cgMLST scheme for P. mirabilis using chewBBACA. In total 72 complete P. mirabilis genomes, representing the diversity of this species, were used to set up a cgMLST scheme targeting 1,842 genes, 635 unfinished (contig, chromosome, and scaffold) genomes were used for its validation.
RESULTS:
We identified a total of 205 CGs from 695 P. mirabilis strains with regional distribution characteristics. Of these, 159 unique CGs were distributed in 16 countries. CG20 and CG3 carried large numbers of shared and unique antibiotic resistance genes. Nine virulence genes ( papC, papD, papE, papF, papG, papH, papI, papJ, and papK) related to the P fimbrial operon that cause severe urinary tract infections were only found in CG20. These CGs require attention due to potential risks.
CONCLUSION
This research innovatively performs high-resolution molecular typing of P. mirabilis using whole-genome sequencing technology combined with a bioinformatics pipeline (chewBBACA). We found that the CGs of P. mirabilis showed regional distribution differences. We expect that our research will contribute to the establishment of cgMLST for P. mirabilis.
Genome, Bacterial
;
Proteus mirabilis/genetics*
;
Multilocus Sequence Typing
;
Molecular Epidemiology
;
Genotype
3.Clinical practice guideline for stage Ⅳ primary lung cancer in China (2023 edition).
Chinese Journal of Oncology 2023;45(1):1-30
Primary lung cancer is the most common malignant disease and the leading cause of cancer death in China, with an estimated 828 thousand incident cases and 657 thousand deaths in 2016. Due to the absence of effective early screening methods, most patients with lung cancer are in stage Ⅳ when diagnosed. Multi-disciplinary treatment based on systemic therapy is the treatment principle for patients with stage Ⅳ lung cancer, chemotherapy is the cornerstone of stage Ⅳ lung cancer, but its efficacy is unsatisfactory. In recent years, with the rapid development of molecular targeted therapy and immunotherapy, the treatment concept has continuously changed and treatment outcome for patients has also been greatly improved. In order to update the progress in the treatment of stage Ⅳ lung cancer worldwide timely, and further improve the level of standardized diagnosis and treatment of stage Ⅳ lung cancer in China, Chinese Association for Clinical Oncologists and Medical Oncology Branch of Chinese International Exchange and Promotion Association for Medical and Healthcare organized experts to compose "Clinical Practice Guideline for Stage Ⅳ Primary Lung Cancer in China (2023 edition)" .
Humans
;
Lung Neoplasms/drug therapy*
;
Immunotherapy
;
Molecular Targeted Therapy
;
China/epidemiology*
;
Medical Oncology
4.Molecular epidemiology and antibiotic resistance of Pseudomonas aeruginosa isolated from blood in a hospital in Shandong Province from 2014 to 2021.
Jia Zheng WANG ; Xiu Tao DONG ; Xiao Ning ZHANG ; Piao DENG ; Fang CHENG ; Wan Shan MA
Chinese Journal of Preventive Medicine 2023;57(10):1558-1564
Objective: To identify the antibiotic resistance, virulence genes, and sequence types of Pseudomonas aeruginosa (P. aeruginosa) strains isolated from blood. Methods: From November 2014 to December 2021, a total of 94 nonrepetitive P. aeruginosa isolates were obtained from blood samples of patients at the First Affiliated Hospital of Shandong First Medical University in Shandong Province, China. The bacteria were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry. Antibiotic resistance of the P. aeruginosa isolates was detected using Vitek 2 Compact system. Polymerase chain reaction (PCR) was conducted for the 18 virulence genes, and multi locus sequence typing (MLST) was performed to identify the sequence types of the P. aeruginosa strains. The resistance rates and distributions of virulence genes between carbapenem resistant pseudomonas aeruginosa (CRPA) and carbapenem susceptible pseudomonas aeruginosa (CSPA) isolates were compared using the Chi-square test. Results: Among 94 P. aeruginosa isolates, 19 (20.2%) isolates were found to be multidrug resistant (MDR) bacteria, of which 17 were CRPA isolates and 2 were CSPA isolates. All strains contained more than 10 virulence genes. Except for exoU gene, the detection rate of other genes was above 83%. MLST analysis revealed a total of 66 different STs, including 59 existing STs and 7 novel STs. Among them, ST244 (n=11, 11.7%) and ST270 (n=7, 7.4%) were the dominant STs. Although these two types of isolates harbored the same virulence genes, the resistance rates to carbapenem were different. 54.5% (6/11) ST244 isolates were CRPA but all 7 ST270 isolates were CSPA. Conclusion: Although the resistance rates of P. aeruginosa strains isolated from blood were at a low level, some MDR and CRPA isolates were detected. As the high virulence gene detection rates and genetic diversity were found for P. aeruginosa strains isolated from blood, close attention should be paid to avoid transmission and outbreaks.
Humans
;
Pseudomonas aeruginosa/genetics*
;
Multilocus Sequence Typing
;
Molecular Epidemiology
;
Pseudomonas Infections/microbiology*
;
Microbial Sensitivity Tests
;
Hospitals
;
Carbapenems/pharmacology*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
beta-Lactamases
5.Molecular epidemiology and antibiotic resistance of Pseudomonas aeruginosa isolated from blood in a hospital in Shandong Province from 2014 to 2021.
Jia Zheng WANG ; Xiu Tao DONG ; Xiao Ning ZHANG ; Piao DENG ; Fang CHENG ; Wan Shan MA
Chinese Journal of Preventive Medicine 2023;57(10):1558-1564
Objective: To identify the antibiotic resistance, virulence genes, and sequence types of Pseudomonas aeruginosa (P. aeruginosa) strains isolated from blood. Methods: From November 2014 to December 2021, a total of 94 nonrepetitive P. aeruginosa isolates were obtained from blood samples of patients at the First Affiliated Hospital of Shandong First Medical University in Shandong Province, China. The bacteria were identified using matrix-assisted laser desorption ionization time of flight mass spectrometry. Antibiotic resistance of the P. aeruginosa isolates was detected using Vitek 2 Compact system. Polymerase chain reaction (PCR) was conducted for the 18 virulence genes, and multi locus sequence typing (MLST) was performed to identify the sequence types of the P. aeruginosa strains. The resistance rates and distributions of virulence genes between carbapenem resistant pseudomonas aeruginosa (CRPA) and carbapenem susceptible pseudomonas aeruginosa (CSPA) isolates were compared using the Chi-square test. Results: Among 94 P. aeruginosa isolates, 19 (20.2%) isolates were found to be multidrug resistant (MDR) bacteria, of which 17 were CRPA isolates and 2 were CSPA isolates. All strains contained more than 10 virulence genes. Except for exoU gene, the detection rate of other genes was above 83%. MLST analysis revealed a total of 66 different STs, including 59 existing STs and 7 novel STs. Among them, ST244 (n=11, 11.7%) and ST270 (n=7, 7.4%) were the dominant STs. Although these two types of isolates harbored the same virulence genes, the resistance rates to carbapenem were different. 54.5% (6/11) ST244 isolates were CRPA but all 7 ST270 isolates were CSPA. Conclusion: Although the resistance rates of P. aeruginosa strains isolated from blood were at a low level, some MDR and CRPA isolates were detected. As the high virulence gene detection rates and genetic diversity were found for P. aeruginosa strains isolated from blood, close attention should be paid to avoid transmission and outbreaks.
Humans
;
Pseudomonas aeruginosa/genetics*
;
Multilocus Sequence Typing
;
Molecular Epidemiology
;
Pseudomonas Infections/microbiology*
;
Microbial Sensitivity Tests
;
Hospitals
;
Carbapenems/pharmacology*
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
beta-Lactamases
6.Clinical features and molecular epidemiology of carbapenem-resistant Enterobacterales infection in children.
Long YE ; Li-Yan ZHANG ; Yue ZHAO ; Bing GU ; Zhu WU ; Yong-Zheng PENG
Chinese Journal of Contemporary Pediatrics 2022;24(8):881-886
OBJECTIVES:
To study the clinical features of children with carbapenem-resistant Enterobacterales (CRE) infection and the molecular characteristics of isolated strains.
METHODS:
A retrospective analysis was performed on the clinical data and infection status of the children who were hospitalized in Guangdong Provincial People's Hospital from January 2018 to June 2021. A total of 1 098 non-repetitive strains of Enterobacterales were obtained. Drug sensitivity test, PCR amplification, and resistance-related gene sequencing were performed for 66 isolated CRE strains to observe molecular epidemiology.
RESULTS:
Among the 1 098 strains of Enterobacterales, the detection rate of CRE was 6.01% (66/1 098). The 66 CRE strains were isolated from 66 children, among whom there were 37 boys (56%) and 29 girls (44%), with an age of 2 days to 14 years. Among these 66 children, 16 (24%) had an age of <1 month, 28 (42%) had an age of 1-12 months, 11 (17%) had an age of 12-36 months, and 11 (17%) had an age of >36 months. The children with CRE were mainly distributed in the department of neonatology (38 children, 58%) and the pediatric intensive care unit (17 children, 26%). The top three types of specimens with CRE detection were respiratory specimens (48%), midstream urine specimens (21%), and blood specimens (17%). The CRE strains were mainly Klebsiella pneumoniae (45 strains, 68%), Escherichia coli (12 strains, 18%), and Enterobacter cloacae (6 strains, 9%), with high resistance to carbapenems (such as imipenem and ertapenem), penicillin, and cephalosporins, slightly high resistance to commonly used antibiotics, and relatively low resistance to amikacin (14%), levofloxacin (23%), and tobramycin (33%). The carbapenemase genotypes of Klebsiella pneumoniae strains were mainly blaNDM (20 strains, 44%), blaIMP (10 strains, 22%), and blaKPC (5 strains, 11%), and the carbapenemase genotypes of Escherichia coli strains were mainly blaNDM (10 strains, 83%). After sequencing, there were 24 blaNDM-1 strains, 6 blaNDM-5 strains, 5 blaIMP-4 strains, and 3 blaKPC-2 strains, and some genotypes were not identified.
CONCLUSIONS
There is a high incidence rate of CRE infection among children, mainly those aged 1-12 months. CRE generally has high resistance to antibacterial drugs, and metalloenzymes are the main type of carbapenemases for CRE strains in children.
Adolescent
;
Anti-Bacterial Agents
;
Bacterial Proteins
;
Carbapenems
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Inosine Monophosphate
;
Klebsiella pneumoniae
;
Male
;
Microbial Sensitivity Tests
;
Molecular Epidemiology
;
Retrospective Studies
;
beta-Lactamases
7.Advances on molecular typing methods and evolution of human parainfluenza virus.
Jie JIANG ; Wen Bo XU ; Yan ZHANG ; Zhen ZHU ; Nai Ying MAO
Chinese Journal of Preventive Medicine 2022;56(2):203-211
Human parainfluenza viruses (HPIVs) is one of the main causes of acute respiratory tract infections in children. HPIVs have been grouped into four serotypes (HPIV1~HPIV4) according to serological and genetic variation. Different serotypes of HPIVs have diverse clinical disease spectrum, epidemic characteristics and disease burden. Based on the nucleotide variation in structural protein genes, HPIVs can be further divided into distinct genotypes and subtypes with diverse temporal and spatial distribution features. The standard molecular typing methods are helpful to clarify the gene evolution and transmission patterns of HPIVs in the process of population transmission. However, the development of molecular epidemiology of HPIVs has been hindered by the lack of a standardized molecular typing method worldwide. Therefore, this study reviewed the viral characteristics, genome structure, existing genotyping methods and evolution of HPIVs, and screened the reference strains for molecular typing, so as to improve the understanding of gene characteristics and molecular typing of HPIVs, and provide an important scientific basis for the monitoring and research of molecular epidemiology of HPIVs in China.
Child
;
Humans
;
Molecular Typing
;
Parainfluenza Virus 1, Human/genetics*
;
Parainfluenza Virus 2, Human/genetics*
;
Parainfluenza Virus 3, Human/genetics*
;
Paramyxoviridae Infections/epidemiology*
;
Respiratory Tract Infections/epidemiology*
8.Analysis of epidemic characteristics of anthrax in China from 2017 to 2019 and molecular typing of Bacillus anthracis.
En Min ZHANG ; Hui Juan ZHANG ; Jin Rong HE ; Wei LI ; Jian Chun WEI
Chinese Journal of Preventive Medicine 2022;56(4):422-426
Objective: To analyze the epidemiological characteristics of anthrax in China from 2017 to 2019 and molecular typing of Bacillus anthracis isolated from some provinces (autonomous regions). Methods: Surveillance data of anthrax cases reported from 2017 to 2019 in the Infectious Disease Surveillance information System of China Disease Prevention and Control and the Public Health Emergency Reporting and Management Information System were collected, and descriptive epidemiological methods were used to analyze the epidemic characteristics, including the temporal, geographic and demographic distribution of this disease. A total of 47 strains of Bacillus anthracis isolated from 2017 to 2019 were analyzed by canSNP and MLVA15. Results: A total of 951 cases of anthrax were reported from 2017 to 2019, of which 938 were cutaneous anthrax, representing 98.63% of the total number reported. It was mainly distributed in the west and northeast of China, and the three provinces with the highest number of cases were Gansu (215), Sichuan (202) and Qinghai (191). Cases had been reported throughout the year, more cases occurred in the summer and autumn, and August was the month with the most cases,66.35% (211/318), 72.32% (243/336) and 68.01% (202/297) of cases were reported during June to September. The age distribution was mainly between 20 and 59 years old, accounting for more than 80% of all cases. The number of male cases was significantly higher than that of female cases, the ratio of male to female was about 3∶1. The occupations were mainly herdsmen and farmers, accounting for 49.70% to 58.18% and 31.45% to 36.70%, respectively. Public health events occurred every year, and 29 events had been reported from 2017 to 2019. canSNP analysis showed that 37 of the 47 strains belonged to the A.Br.001/002 subgroup and 10 belonged to the A.Br.Ames subgroup. MLVA15 analysis showed that there were 17 genotypes, of which 10 genotypes contained only one strain. Conclusion: Cutaneous anthrax was the predominant clinical type in China from 2017 to 2019.The seasonal, geographic and demographic distribution characteristics were evident.Molecular typing methods such as canSNP and MLVA15 can be used to trace the source of infectious diseases and provide technical support for anthrax prevention and control.
Adult
;
Anthrax/prevention & control*
;
Bacillus anthracis/genetics*
;
China/epidemiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Molecular Typing
;
Polymorphism, Single Nucleotide
;
Skin Diseases, Bacterial
;
Young Adult
9.Analysis on epidemiological characteristics of dengue fever and E gene evolution of dengue virus in Guangzhou, 2020.
Li Yun JIANG ; Yuan LIU ; Wen Zhe SU ; Yi Min CAO ; Wen Hui LIU ; Biao DI ; Zhi Cong YANG
Chinese Journal of Epidemiology 2022;43(5):716-721
Objective: To assess the incidence of dengue fever and E gene evolution of dengue virus in Guangzhou in 2020 and understand the local epidemiological characteristics of dengue fever and spreading of dengue virus. Methods: The information of dengue fever cases in Guangzhou in 2020 was collected from Notifiable Infectious Disease System of Chinese Center for Disease Control and Prevention Information System. Serum samples from the cases were detected by real-time PCR. The E gene was sequenced and analyzed. Maximum likelihood phylogenetic trees were constructed using software MEGA 5.05. The statistical analysis was conducted using software SPSS 20.0. Results: A total of 33 dengue fever cases were reported in Guangzhou in 2020, including 31 (93.94%) imported cases and 2 (6.06%) local cases. Compared with the data during 2016 to 2019, the number of cases, overall incidence and local incidence all decreased with statistically significant differences (all P<0.05). The imported cases from Southeast Asia constituted 90.32% (28/31) of imported cases. The E gene sequences and the phylogenetic trees of imported and local cases demonstrated close relationship with the virus sequences from Southeast Asian, and they were less homologous with the sequences of dengue virus isolated in Guangzhou in previous years. Conclusions: The incidence of dengue in Guangzhou in 2020 was significantly affected by the imported cases, especially those from Southeast Asian countries. The study result demonstrated that dengue fever was not endemic in Guangzhou and it was caused by imported ones.
China/epidemiology*
;
Dengue/epidemiology*
;
Dengue Virus/genetics*
;
Disease Outbreaks
;
Evolution, Molecular
;
Genotype
;
Humans
;
Phylogeny

Result Analysis
Print
Save
E-mail