1.Development and validation of risk prediction model for new-onset cardiovascular diseases among breast cancer patients: Based on regional medical data of Inner Mongolia.
Yun Jing ZHANG ; Li Ying QIAO ; Meng QI ; Ying YAN ; Wei Wei KANG ; Guo Zhen LIU ; Ming Yuan WANG ; Yun Feng XI ; Sheng Feng WANG
Journal of Peking University(Health Sciences) 2023;55(3):471-479
OBJECTIVE:
To develop and validate a three-year risk prediction model for new-onset cardiovascular diseases (CVD) among female patients with breast cancer.
METHODS:
Based on the data from Inner Mongolia Regional Healthcare Information Platform, female breast cancer patients over 18 years old who had received anti-tumor treatments were included. The candidate predictors were selected by Lasso regression after being included according to the results of the multivariate Fine & Gray model. Cox proportional hazard model, Logistic regression model, Fine & Gray model, random forest model, and XGBoost model were trained on the training set, and the model performance was evaluated on the testing set. The discrimination was evaluated by the area under the curve (AUC) of the receiver operator characteristic curve (ROC), and the calibration was evaluated by the calibration curve.
RESULTS:
A total of 19 325 breast cancer patients were identified, with an average age of (52.76±10.44) years. The median follow-up was 1.18 [interquartile range (IQR): 2.71] years. In the study, 7 856 patients (40.65%) developed CVD within 3 years after the diagnosis of breast cancer. The final selected variables included age at diagnosis of breast cancer, gross domestic product (GDP) of residence, tumor stage, history of hypertension, ischemic heart disease, and cerebrovascular disease, type of surgery, type of chemotherapy and radiotherapy. In terms of model discrimination, when not considering survival time, the AUC of the XGBoost model was significantly higher than that of the random forest model [0.660 (95%CI: 0.644-0.675) vs. 0.608 (95%CI: 0.591-0.624), P < 0.001] and Logistic regression model [0.609 (95%CI: 0.593-0.625), P < 0.001]. The Logistic regression model and the XGBoost model showed better calibration. When considering survival time, Cox proportional hazard model and Fine & Gray model showed no significant difference for AUC [0.600 (95%CI: 0.584-0.616) vs. 0.615 (95%CI: 0.599-0.631), P=0.188], but Fine & Gray model showed better calibration.
CONCLUSION
It is feasible to develop a risk prediction model for new-onset CVD of breast cancer based on regional medical data in China. When not considering survival time, the XGBoost model and the Logistic regression model both showed better performance; Fine & Gray model showed better performance in consideration of survival time.
Humans
;
Female
;
Adult
;
Middle Aged
;
Adolescent
;
Breast Neoplasms/epidemiology*
;
Cardiovascular Diseases/etiology*
;
Proportional Hazards Models
;
Logistic Models
;
China/epidemiology*
2.Effect of lower limb amputation level on aortic hemodynamics: a numerical study.
Junru WEI ; Zhongyou LI ; Junjie DIAO ; Xiao LI ; Lei MIN ; Wentao JIANG ; Fei YAN
Journal of Biomedical Engineering 2022;39(1):67-74
It has been found that the incidence of cardiovascular disease in patients with lower limb amputation is significantly higher than that in normal individuals, but the relationship between lower limb amputation and the episodes of cardiovascular disease has not been studied from the perspective of hemodynamics. In this paper, numerical simulation was used to study the effects of amputation on aortic hemodynamics by changing peripheral impedance and capacitance. The final results showed that after amputation, the aortic blood pressure increased, the time averaged wall shear stress of the infrarenal abdominal aorta decreased and the oscillatory shear index of the left and right sides was asymmetrically distributed, while the time averaged wall shear stress of the iliac artery decreased and the oscillatory shear index increased. The changes above were more significant with the increase of amputation level, which will result in a higher incidence of atherosclerosis and abdominal aortic aneurysm. These findings preliminarily revealed the influence of lower limb amputation on the occurrence of cardiovascular diseases, and provided theoretical guidance for the design of rehabilitation training and the optimization of cardiovascular diseases treatment.
Amputation
;
Aorta, Abdominal/surgery*
;
Aortic Aneurysm, Abdominal/surgery*
;
Blood Flow Velocity/physiology*
;
Hemodynamics/physiology*
;
Humans
;
Lower Extremity
;
Models, Cardiovascular
;
Stress, Mechanical
3.Effect of a delay mode of a ventricular assist device on hemodynamics of the cardiovascular system.
Yiliang REN ; Shaojun WANG ; Yu GAO ; Zijian LI ; Yao ZHANG ; Fangqun WANG
Journal of Biomedical Engineering 2022;39(2):329-338
The implantation of biventricular assist device (BiVAD) is more challenging than that of left ventricular assist device for the interaction in the process of multiple input and output. Besides, ventricular assist device (VAD) often runs in constant speed (CS) mode in clinical use and thus BiVAD also faces the problems of low pulsation and imbalance of blood volume between systemic circulation and pulmonary circulation. In this paper, a delay assist mode for a VAD by shortening the support time of VAD was put forward. Then, the effect of the delay mode on cardiac output, pulsation and the function of the aortic valve was observed by numerical method and the rules of hemodynamics were revealed. The research showed that compared with VAD supported in CS mode, the VAD using delay mode in systolic and diastolic period proposed in this paper could meet the demand of cardiac output perfusion and restore the function of the arterial valves. The open ratio of aortic valve (AV) and pulmonary valve (PV) increased with the time set in delay mode, and the blood through the AV/PV helped to balance the left and the right cardiac volume. Besides, delay mode also improved the pulsation index of arterial blood flow, which is conducive to the recovery of the ventricular pulse function of patients.
Cardiovascular System
;
Diastole
;
Heart Failure
;
Heart Rate
;
Heart-Assist Devices
;
Hemodynamics
;
Humans
;
Models, Cardiovascular
4.Influence of bionic texture coronary stent on hemodynamics after implantation.
Changsheng LI ; Haiquan FENG ; Shuangquan MA ; Liping BAI
Journal of Biomedical Engineering 2022;39(2):339-346
To explore the influence of bionic texture coronary stents on hemodynamics, a type of bioabsorbable polylactic acid coronary stents was designed, for which a finite element analysis method was used to carry out simulation analysis on blood flow field after the implantation of bionic texture stents with three different shapes (rectangle, triangle and trapezoid), thus revealing the influence of groove shape and size on hemodynamics, and identifying the optimal solution of bionic texture groove. The results showed that the influence of bionic texture grooves of different shapes and sizes on the lower wall shear stress region had a certain regularity. Specifically, the improvement effect of grooves above 0.06 mm on blood flow characteristics was poor, and the effect of grooves below 0.06 mm was good. Furthermore, the smaller the size is, the better the improvement effect is, and the 0.02 mm triangular groove had the best improvement effect. Based on the results of this study, it is expected that bionic texture stents have provided a new method for reducing in-stent restenosis.
Bionics
;
Computer Simulation
;
Coronary Vessels
;
Hemodynamics/physiology*
;
Models, Cardiovascular
;
Stents
;
Stress, Mechanical
5.Isogenic human pluripotent stem cell disease models reveal ABRA deficiency underlies cTnT mutation-induced familial dilated cardiomyopathy.
Bin LI ; Yongkun ZHAN ; Qianqian LIANG ; Chen XU ; Xinyan ZHOU ; Huanhuan CAI ; Yufan ZHENG ; Yifan GUO ; Lei WANG ; Wenqing QIU ; Baiping CUI ; Chao LU ; Ruizhe QIAN ; Ping ZHOU ; Haiyan CHEN ; Yun LIU ; Sifeng CHEN ; Xiaobo LI ; Ning SUN
Protein & Cell 2022;13(1):65-71
6.Associations between 24-hour urinary sodium excretion and all-cause mortality in adults living in north China.
Xiao Yun LIU ; Zhi Guang LIU ; Qing DENG ; Xiao Ru CHENG ; Bo HU ; Li Sheng LIU ; Xing He WANG
Chinese Journal of Cardiology 2022;50(12):1220-1228
Objective: To investigate the associations between 24-hour urinary sodium excretion (24hUNaE) and all-cause mortality in adult Northern Chinese population. Methods: Data from this study were derived from the prospective urban and rural epidemiology (PURE) study in north China. Baseline information of all participants were obtained by face to face interview through trained research staffs based on questionnaires, and morning fasting urine samples of participants were collected to estimate 24hUNaE and 24-hour potassium excretion (24hUKE). Multivariable frailty Cox regression models were used to explore the association between 24hUNaE (<3.00, 3.00-3.99, 4.00-4.99, 5.00-5.99 and ≥6 g/d) and all-cause death. Results: A total of 27 310 participants were included in this study. The mean 24hUNaE was (5.84±1.73) g/d. After a median follow-up of 8.8 years, 1 024 participants died (3.7%), including 390 cardiovascular related deaths and 591 non-cardiovascular related deaths. The cause of death of the remaining patients could not be determined. Using 24hUNaE level of 4.00-4.99 g/d as the reference group, after fully adjustment, 24hUNaE ≥6.00 g/d was associated with an increased risk of all-cause death (HR=1.24, 95%CI: 1.02-1.49) and cardiovascular related death (HR=1.39, 95%CI: 1.02-1.88). 24hUNaE<3.00 g/d was associated with increased risk of all-cause mortality (HR=1.38, 95%CI: 0.96-1.99). There was no significant association between 24hUNaE and non-cardiovascular related death. Furthermore, using the combination of 24hUNaE 4.00-4.99 g/d and 24hUKE≥2.11 g/d as the reference group, the highest risk occurred in participants with the combination of low sodium (<3.00 g/d) and low potassium (<2.11 g/d). Conclusion: 24hUNaE equal or higher than 6 g/d or lower than 3 g/d is associated with increased risk of all-cause mortality and cardiovascular related death in Northern Chinese population. Besides, moderate sodium intake in combination with increased potassium intake might reduce the risk of all-cause death.
Humans
;
Adult
;
Sodium/urine*
;
Prospective Studies
;
Potassium/urine*
;
China/epidemiology*
;
Proportional Hazards Models
;
Cardiovascular Diseases/epidemiology*
7.Study on modeling, simulation, and sensorless feedback control algorithm of the cavopulmonary assist device based on the subpulmonary ventricular exclusion.
Jing PENG ; Zhehuan TAN ; Yong LUAN ; Kairong QIN ; Yu WANG
Journal of Biomedical Engineering 2021;38(3):539-548
The subpulmonary ventricular exclusion (Fontan) could effectively improve the living quality for the children patients with a functional single ventricle in clinical. However, postoperative Fontan circulation failure can easily occur, causing obvious limitations while clinically implementing Fontan. The cavopulmonary assist devices (CPAD) is currently an effective means to solve such limitations. Therefore, in this paper the
Algorithms
;
Child
;
Feedback
;
Heart-Assist Devices
;
Hemodynamics
;
Humans
;
Models, Cardiovascular
8.Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter.
Natalie M JOHNSON ; Aline Rodrigues HOFFMANN ; Jonathan C BEHLEN ; Carmen LAU ; Drew PENDLETON ; Navada HARVEY ; Ross SHORE ; Yixin LI ; Jingshu CHEN ; Yanan TIAN ; Renyi ZHANG
Environmental Health and Preventive Medicine 2021;26(1):72-72
BACKGROUND:
Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development.
METHOD:
In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM
RESULTS:
Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health.
CONCLUSION
Policies to reduce maternal exposure and health consequences in children should be a high priority. PM
Adult
;
Air Pollutants/adverse effects*
;
Air Pollution/prevention & control*
;
Animals
;
Cardiovascular Diseases/chemically induced*
;
Child Health
;
Child, Preschool
;
Disease Models, Animal
;
Endocrine System Diseases/chemically induced*
;
Epigenomics
;
Female
;
Humans
;
Immune System Diseases/chemically induced*
;
Infant
;
Infant, Newborn
;
Male
;
Maternal Exposure/adverse effects*
;
Nervous System Diseases/chemically induced*
;
Oxidative Stress
;
Particle Size
;
Particulate Matter/adverse effects*
;
Placenta
;
Pregnancy
;
Pregnancy Outcome/epidemiology*
;
Prenatal Exposure Delayed Effects/epidemiology*
;
Respiratory Tract Diseases/chemically induced*
;
Young Adult
9.Association Analysis of Hyperlipidemia with the 28-Day All-Cause Mortality of COVID-19 in Hospitalized Patients.
Bin WU ; Jiang Hua ZHOU ; Wen Xin WANG ; Hui Lin YANG ; Meng XIA ; Bing Hong ZHANG ; Zhi Gang SHE ; Hong Liang LI
Chinese Medical Sciences Journal 2021;36(1):17-26
Objective This study aimed to determine the association of hyperlipidemia with clinical endpoints among hospitalized patients with COVID-19, especially those with pre-existing cardiovascular diseases (CVDs) and diabetes. Methods This multicenter retrospective cohort study included all patients who were hospitalized due to COVID-19 from 21 hospitals in Hubei province, China between December 31, 2019 and April 21, 2020. Patients who were aged < 18 or ≥ 85 years old, in pregnancy, with acute lethal organ injury (e.g., acute myocardial infarction, severe acute pancreatitis, acute stroke), hypothyroidism, malignant diseases, severe malnutrition, and those with normal lipid profile under lipid-lowering medicines (e.g., statin, niacin, fenofibrate, gemfibrozil, and ezetimibe) were excluded. Propensity score matching (PSM) analysis at 1:1 ratio was performed to minimize baseline differences between patient groups of hyperlipidemia and non-hyperlipidemia. PSM analyses with the same strategies were further conducted for the parameters of hyperlipidemia in patients with increased triglyceride (TG), increased low-density lipoprotein cholesterol (LDL-C), and decreased high-density lipoprotein cholesterol (HDL-C). Mixed-effect Cox model analysis was performed to investigate the associations of the 28-days all-cause deaths of COVID-19 patients with hyperlipidemia and the abnormalities of lipid parameters. The results were verified in male, female patients, and in patients with pre-existing CVDs and type 2 diabetes. Results Of 10 945 inpatients confirmed as COVID-19, there were 9822 inpatients included in the study, comprising 3513 (35.8%) cases without hyperlipidemia and 6309 (64.2%) cases with hyperlipidemia. Based on a mixed-effect Cox model after PSM at 1:1 ratio, hyperlipidemia was not associated with increased or decreased 28-day all-cause death [adjusted hazard ratio (
Adult
;
Aged
;
Aged, 80 and over
;
COVID-19/therapy*
;
Cardiovascular Diseases/complications*
;
Case-Control Studies
;
Cause of Death
;
China/epidemiology*
;
Diabetes Mellitus, Type 2/complications*
;
Female
;
Hospitalization
;
Humans
;
Hyperlipidemias/complications*
;
Male
;
Middle Aged
;
Propensity Score
;
Proportional Hazards Models
;
Retrospective Studies
;
Risk Factors
10.Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall.
Yundi FENG ; Hao WU ; Yunlong HUO
Journal of Biomedical Engineering 2020;37(6):939-947
Coronary artery diseases (CAD) have always been serious threats to human health. The measurement, constitutive modeling, and analysis of mechanical properties of the blood vessel wall can provide a tool for disease diagnosis, stent implantation, and artificial artery design. The vessel wall has both active and passive mechanical properties. The passive mechanical properties are mainly determined by elastic and collagen fibers, and the active mechanical properties are determined by the contraction of vascular smooth muscle cells (VSMC). Substantial studies have shown that, the two-layer model of the vessel wall can feature the mechanical properties well, and the circumferential, axial and radial strain and stress are of great significance in arterial wall mechanics. This study reviewed recent investigations of mechanical properties of the vessel wall. Challenges and opportunities in this area are discussed relevant to the clinical treatment of coronary artery diseases.
Biomechanical Phenomena
;
Coronary Vessels
;
Humans
;
Models, Cardiovascular
;
Myocytes, Smooth Muscle
;
Stress, Mechanical

Result Analysis
Print
Save
E-mail