1.Effect of mitophagy related genes on the antioxidant properties of Saccharomyces cerevisiae.
Wanqi CHENG ; Qianyao HOU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2023;39(8):3464-3480
Mitophagy is a process whereby cells selectively remove mitochondria through the mechanism of autophagy, which plays an important role in maintaining cellular homeostasis. In order to explore the effect of mitophagy genes on the antioxidant activities of Saccharomyces cerevisiae, mutants with deletion or overexpression of mitophagy genes ATG8, ATG11 and ATG32 were constructed respectively. The results indicated that overexpression of ATG8 and ATG11 genes significantly reduced the intracellular reactive oxygen species (ROS) content upon H2O2 stress for 6 h, which were 61.23% and 46.35% of the initial state, respectively. Notable, overexpression of ATG8 and ATG11 genes significantly increased the mitochondrial membrane potential (MMP) and ATP content, which were helpful to improve the antioxidant activities of the strains. On the other hand, deletion of ATG8, ATG11 and ATG32 caused mitochondrial damage and significantly decreased cell vitality, and caused the imbalance of intracellular ROS. The intracellular ROS content significantly increased to 174.27%, 128.68%, 200.92% of the initial state, respectively, upon H2O2 stress for 6 h. The results showed that ATG8, ATG11 and ATG32 might be potential targets for regulating the antioxidant properties of yeast, providing a new clue for further research.
Mitophagy/genetics*
;
Saccharomyces cerevisiae/genetics*
;
Antioxidants
;
Hydrogen Peroxide/pharmacology*
;
Reactive Oxygen Species
2.Polygalacin D inhibits the growth of hepatocellular carcinoma cells through BNIP3L-mediated mitophagy and endogenous apoptosis pathways.
Fulong NAN ; Wenlong NAN ; Zhongjie YU ; Hui WANG ; Xiaoni CUI ; Shasha JIANG ; Xianjuan ZHANG ; Jun LI ; Zhifei WANG ; Shuyun ZHANG ; Bin WANG ; Yiquan LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):346-358
Platycodon grandiflorum (Jacq.) A. DC. is a famous medicinal plant commonly used in East Asia. Triterpene saponins isolated from P. grandiflorum are the main biologically active compounds, among which polygalacin D (PGD) has been reported to be an anti-tumor agent. However, its anti-tumor mechanism against hepatocellular carcinoma is unknown. This study aimed to explore the inhibitory effect of PGD in hepatocellular carcinoma cells and related mechanisms of action. We found that PGD exerted significant inhibitory effect on hepatocellular carcinoma cells through apoptosis and autophagy. Analysis of the expression of apoptosis-related proteins and autophagy-related proteins revealed that this phenomenon was attributed to the mitochondrial apoptosis and mitophagy pathways. Subsequently, using specific inhibitors, we found that apoptosis and autophagy had mutually reinforcing effects. In addition, further analysis of autophagy showed that PGD induced mitophagy by increasing BCL2 interacting protein 3 like (BNIP3L) levels.In vivo experiments demonstrated that PGD significantly inhibited tumor growth and increased the levels of apoptosis and autophagy in tumors. Overall, our findings showed that PGD induced cell death of hepatocellular carcinoma cells primarily through mitochondrial apoptosis and mitophagy pathways. Therefore, PGD can be used as an apoptosis and autophagy agonist in the research and development of antitumor agents.
Humans
;
Mitophagy
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Cell Line
;
Autophagy
;
Apoptosis
;
Membrane Proteins
;
Proto-Oncogene Proteins/genetics*
;
Tumor Suppressor Proteins/pharmacology*
3.Treadmill exercise alleviates neuropathic pain by regulating mitophagy of the anterior cingulate cortex in rats.
Cui LI ; Xiao-Ge WANG ; Shuai YANG ; Yi-Hang LYU ; Xiao-Juan GAO ; Jing CAO ; Wei-Dong ZANG
Acta Physiologica Sinica 2023;75(2):160-170
This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.
Rats
;
Animals
;
Mitophagy/physiology*
;
Rats, Sprague-Dawley
;
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology*
;
Gyrus Cinguli
;
Neuralgia
;
Ubiquitin-Protein Ligases/metabolism*
;
Protein Kinases
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins/metabolism*
4.Effect on Danggui Shaoyao Powder on mitophagy in rat model of Alzheimer's disease based on PINK1-Parkin pathway.
Miao YANG ; Wen-Jing YU ; Chun-Xiang HE ; Yi-Jie JIN ; Ze LI ; Ping LI ; Si-Si DENG ; Ya-Qiao YI ; Shao-Wu CHENG ; Zhen-Yan SONG
China Journal of Chinese Materia Medica 2023;48(2):534-541
This study investigated the mechanism of Danggui Shaoyao Powder(DSP) against mitophagy in rat model of Alzheimer's disease(AD) induced by streptozotocin(STZ) based on PTEN induced putative kinase 1(PINK1)-Parkin signaling pathway. The AD rat model was established by injecting STZ into the lateral ventricle, and the rats were divided into normal group, model group, DSP low-dose group(12 g·kg~(-1)·d~(-1)), DSP medium-dose group(24 g·kg~(-1)·d~(-1)), and DSP high-dose group(36 g·kg~(-1)·d~(-1)). Morris water maze test was used to detect the learning and memory function of the rats, and transmission electron microscopy and immunofluorescence were employed to detect mitophagy. The protein expression levels of PINK1, Parkin, LC3BⅠ/LC3BⅡ, and p62 were assayed by Western blot. Compared with the normal group, the model group showed a significant decrease in the learning and memory function(P<0.01), reduced protein expression of PINK1 and Parkin(P<0.05), increased protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05), and decreased occurrence of mitophagy(P<0.01). Compared with the model group, the DSP medium-and high-dose groups notably improved the learning and memory ability of AD rats, which mainly manifested as shortened escape latency, leng-thened time in target quadrants and elevated number of crossing the platform(P<0.05 or P<0.01), remarkably activated mitophagy(P<0.05), up-regulated the protein expression of PINK1 and Parkin, and down-regulated the protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05 or P<0.01). These results demonstrated that DSP might promote mitophagy mediated by PINK1-Parkin pathway to remove damaged mitochondria and improve mitochondrial function, thereby exerting a neuroprotective effect.
Rats
;
Animals
;
Mitophagy
;
Alzheimer Disease/genetics*
;
Powders
;
Protein Kinases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
5.Role of Mitophagy in Myocardial Ischemia/Reperfusion Injury and Chinese Medicine Treatment.
Jun-Yan XIA ; Cong CHEN ; Qian LIN ; Jie CUI ; Jie WAN ; Yan LI ; Dong LI
Chinese journal of integrative medicine 2023;29(1):81-88
Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury (MIRI). Moderate mitophagy can remove damaged mitochondria, inhibit excessive reactive oxygen species accumulation, and protect mitochondria from damage. However, excessive enhancement of mitophagy greatly reduces adenosine triphosphate production and energy supply for cell survival, and aggravates cell death. How dysfunctional mitochondria are selectively recognized and engulfed is related to the interaction of adaptors on the mitochondrial membrane, which mainly include phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced kinase 1/Parkin, hypoxia-inducible factor-1 α/Bcl-2 and adenovirus e1b19k Da interacting protein 3, FUN-14 domain containing protein 1 receptor-mediated mitophagy pathway and so on. In this review, the authors briefly summarize the main pathways currently studied on mitophagy and the relationship between mitophagy and MIRI, and incorporate and analyze research data on prevention and treatment of MIRI with Chinese medicine, thereby provide relevant theoretical basis and treatment ideas for clinical prevention of MIRI.
Humans
;
Mitochondria/metabolism*
;
Mitophagy/genetics*
;
Myocardial Reperfusion Injury
;
Protein Kinases/metabolism*
6.Taurine inhibits M2 polarization of macrophages by promoting mitophagy.
Chengying CHEN ; Chunhua LAN ; Jianglang YUAN ; Xingxing KONG ; Li LAN ; Xinhang WANG ; Shengboxiaoji CHANG ; Cailing LU ; Xiyi LI ; Shen TANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):488-493
Objective To investigate the molecular mechanism of taurine regulating the polarization of M2 macrophages by mitophagy. Methods THP-1 cells were divided into four groups: M0 group (THP-1 cells were treated by 100 nmol/L phorbol myristate ester for 48 hours to polarize into M0), M2 group (THP-1 cells were induced to polarize into M2 macrophages by 20 ng/mL interferon-4 (IL-4) for 48 hours), M2 combined with taurine groups (added with 40 or 80 mmol/L taurine on the basis of M2 macrophages). The mRNA expression of mannose receptor C type 1(MRC-1), C-C motif chemokine ligand 22(CCL22) and dendritic cell-specific ICAM-3 grabbing non-integrin (CD209) in M2 macrophages were detected by quantitative real-time PCR. Mitochondrial and lysosome probes were used to detect the number of mitochondria and lysosomes by multifunction microplate reader and confocal laser scanning microscope. The level of mitochondrial membrane potential (MMP) was detected by JC-1 MMP assay kit. The expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blot analysis. Results Compared with M0 group, the expression of MRC-1, CCL22, CD209 and PINK1, the number of mitochondria and the level of MMP in M2 group were significantly increased, whereas the number of lysosomes and LC3II/LC3I ratio were decreased. Compared with M2 group, the expressions of MRC-1, CCL22 and CD209, the number of mitochondria and the level of MMP in M2 combined with taurine group dropped significantly while the number of lysosomes was found increased, and the protein expression of PINK1 and LC3II/LC3I ratio were also increased. Conclusions The polarization of M2 macrophages is regulated by taurine to prevent excessive polarization via reducing the level of MMP, improving the level of mitophagy, reducing the number of mitochondria, and inhibiting the mRNA expression of polarization markers in M2 macrophages.
Mitophagy
;
Taurine
;
Macrophages/metabolism*
;
Protein Kinases/metabolism*
;
RNA, Messenger
7.Research progress on the effect of mitochondrial network remodeling on macrophages.
Lianlian ZHU ; Xiangmin KONG ; Wei ZHU
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):656-662
Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.
Mitochondria
;
Mitophagy
;
Homeostasis/physiology*
;
Phagocytosis
;
Macrophages/metabolism*
8.Ginsenoside Rg_1 protects PC12 cells against Aβ-induced injury through promotion of mitophagy by PINK1/parkin activation.
He-Mei LI ; Yi-Xuan JIANG ; Pan-Ling HUANG ; Bo-Cun LI ; Zi-Yu PAN ; Yu-Qing LI ; Xing XIA
China Journal of Chinese Materia Medica 2022;47(2):484-491
Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.
Amyloid beta-Peptides/toxicity*
;
Animals
;
Ginsenosides/pharmacology*
;
Humans
;
Mitophagy/physiology*
;
PC12 Cells
;
Protein Kinases/metabolism*
;
Rats
;
Ubiquitin-Protein Ligases/metabolism*
9.Mitophagy mediated by ligustilide relieves OGD/R-induced injury in HT22 cells.
Qian WU ; Jiao LIU ; Li-Yu TIAN ; Ning WANG
China Journal of Chinese Materia Medica 2022;47(7):1897-1903
Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.
4-Butyrolactone/analogs & derivatives*
;
Apoptosis
;
Calcium/pharmacology*
;
Glucose/metabolism*
;
Humans
;
Mitochondrial Proteins
;
Mitophagy
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/genetics*
10.Regulation of reactive oxygen species on the mitophagy of human periodontal ligament cells through the PINK1/Parkin pathway under starvation.
Zhibo FAN ; Ke JIN ; Shenghong LI ; Jie XU ; Xiaomei XU
West China Journal of Stomatology 2022;40(6):645-653
OBJECTIVES:
This study aimed to explore the specific mechanism, mediated by the reactive oxygen species (ROS) and PINK1/Parkin pathway, of the mitochondrial autophagy of human periodontal ligament cells (hPDLCs) under starvation conditions.
METHODS:
hPDLCs were isolated and cultured from normal periodontal tissues. Earle's balanced salt solution (EBSS) was used to simulated a starvation environment and thus stimulate hPDLCs mitochondrial autophagy. N-Acetyl-L-cysteine (NAC) was used to inhibit ROS production to explore the role of ROS in hPDLC mitochondrial autophagy. Cyclosporin A was used to inhibit the PINK1/Parkin pathway to study the role of ROS and the PINK1/Parkin pathway in hPDLCs activation under starvation. The mitochondrial membrane potential was detected by flow cytometry with a JC-1 mitochondrial membrane potential detection kit. The morphological structure of mitochondria and the formation of mitochondrial autophagosome were observed by transmission electron microscopy. Mito tracker red cmxros and lyso tracker green staining were used to observe the localization of mitochondria and lysosomes. The formation intensity of ROS was detected with a DCFH-DA ROS fluorescent probe. The expression levels of mitochondrial autophagy genes (Tomm20 and Timm23) and the PINK1/Parkin pathway were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The expression levels of mitochondrial autophagy proteins (Tomm20 and Timm23) and PINK1/Parkin protein were detected by Western blot.
RESULTS:
EBSS starvation for 30 min induced the strongest activation of hPDLCs mitochondrial autophagy, increased the expression of ROS, downregulated the expression of mitochondrial autophagy-related genes (Tomm20 and Timm23) (P<0.001), and upregulated the PINK1/Parkin pathway (P<0.001). After NACinhibited ROS production, mitochondrial autophagy was also inhibited. Meanwhile, the expression of Tomm20 and Timm23 was upregulated (P<0.001 and P<0.05), and the expression of the PINK1/parkin pathway (P<0.001 and P<0.05) was down regulated. When cyclosporin A inhibited the expression of the PINK1/Parkin pathway (P<0.05 and P<0.05), it reversed the mitochondrial autophagy of hPDLCs (P<0.001 and P<0.01) and also upregulated the expression of Tomm20 and Timm23 (P<0.001 and P<0.01).
CONCLUSIONS
ROS enhanced the mitochondrial autophagy of hPDLCs primarily through the PINK1/Parkin pathway under starvation conditions.
Humans
;
Mitophagy/genetics*
;
Reactive Oxygen Species/metabolism*
;
Periodontal Ligament/metabolism*
;
Cyclosporine
;
Protein Kinases/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*

Result Analysis
Print
Save
E-mail