1.Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis.
Wen-Peng XIE ; Teng MA ; Yan-Chen LIANG ; Xiang-Peng WANG ; Rong-Xiu BI ; Wei-Guo WANG ; Yong-Kui ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4843-4851
To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1β(IL-1β) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1β showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.
Rats
;
Animals
;
Chondrocytes
;
Osteoarthritis, Knee/pathology*
;
RNA, Circular/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MicroRNAs/metabolism*
;
Apoptosis
;
Autophagy/genetics*
;
Collagen/metabolism*
2.Muscone inhibits opening of mPTP to alleviate OGD/R-induced injury of HT22 cells.
Ping HUANG ; Mei-Ling YUAN ; Lei WANG ; Yu-Ang CHEN ; Ning WANG ; Si-Peng WU
China Journal of Chinese Materia Medica 2023;48(22):6154-6163
This study aims to investigate the mechanism of muscone in inhibiting the opening of mitochondrial permeability transition pore(mPTP) to alleviate the oxygen and glucose deprivation/reoxygenation(OGD/R)-induced injury of mouse hippocampal neurons(HT22). An in vitro model of HT22 cells injured by OGD/R was established. CCK-8 assay was employed to examine the viability of HT22 cells, fluorescence microscopy to measure the mitochondrial membrane potential, the content of reactive oxygen species(ROS), and the opening of mPTP in HT22 cells. Enzyme-linked immunosorbent assay was employed to determine the level of ATP and the content of cytochrome C(Cyt C) in mitochondria of HT22 cells. Flow cytometry was employed to determine the Ca~(2+) content and apoptosis of HT22 cells. The expression of Bcl-2(B-cell lymphoma-2) and Bcl-2-associated X protein(Bax) was measured by Western blot. Molecular docking and Western blot were employed to examine the binding between muscone and methyl ethyl ketone(MEK) after pronase hydrolysis of HT22 cell proteins. After the HT22 cells were treated with U0126, an inhibitor of MEK, the expression levels of MEK, p-ERK, and CypD were measured by Western blot. The results showed that compared with the OGD/R model group, muscone significantly increased the viability, mitochondrial ATP activity, and mitochondrial membrane potential, lowered the levels of ROS, Cyt C, and Ca~(2+), and reduced mPTP opening to inhibit the apoptosis of HT22 cells. In addition, muscone up-regulated the expression of MEK, p-ERK, and down-regulated that of CypD. Molecular docking showed strong binding activity between muscone and MEK. In conclusion, muscone inhibits the opening of mPTP to inhibit apoptosis, thus exerting a protective effect on OGD/R-injured HT22 cells, which is associated with the activation of MEK/ERK/CypD signaling pathway.
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Molecular Docking Simulation
;
Apoptosis
;
Oxygen
;
Adenosine Triphosphate/pharmacology*
;
Mitogen-Activated Protein Kinase Kinases/pharmacology*
;
Glucose/metabolism*
3.c-Jun N-terminal kinase signaling pathway in acetaminophen-induced liver injury.
Wenshang CHEN ; Jijin ZHU ; Shilai LI
Chinese Critical Care Medicine 2023;35(11):1223-1228
Acetaminophen (APAP) is the most common antipyretic, analgesic and anti-inflammatory drug, but its overdose often leads to acute liver injury, even acute liver failure, and death in some severe cases. At present, there is still a lack of specific treatments. The c-Jun N-terminal kinase (JNK) signal pathway is one of the potential therapeutic targets identified in recent years in overdose APAP-induced acute liver injury. This article reviews the JNK signaling pathway of APAP in liver metabolism, the activation of JNK signaling pathway and the amplification of oxidative stress, other pathways or cellular processes related to JNK signaling pathway, and the possible challenges of drugs targeting JNK, so as to provide direction and feasibility analysis for further research and clinical application of JNK signaling pathway targets in APAP hepatotoxicity, and to provide reference for searching for other targets.
Animals
;
Mice
;
Acetaminophen/adverse effects*
;
Chemical and Drug Induced Liver Injury
;
Chemical and Drug Induced Liver Injury, Chronic/metabolism*
;
JNK Mitogen-Activated Protein Kinases/metabolism*
;
Liver
;
Mice, Inbred C57BL
;
Signal Transduction
4.Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps.
Shan CHEN ; Jingcai CHEN ; Jianjun CHEN ; Yanjun WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):891-896
Objective:To investigate the expression level and regulatory mechanism of 15-hydroxyprostaglandin dehydrogenase(HPGD) in chronic rhinosinusitis with nasal polyps(CRSwNP). Methods:The expression pattern and level of HPGD in CRSwNP and control was observed using immunofluorescence, and western blot was used for analysis of HPGD expression in nasal polyp tissues. The effect of recombinant human high mobility group box-1(HMGB1) on HPGD expression in primary human nasal epithelial cells was observed, and the potential blocking effect of RAGE neutralizing antibody on HMGB1-induced HPGD expression was investigated. Results:The expression of HPGD was elevated in CRSwNP patients compared to the control, while the protein mainly localized at CD68-positive cells and epithelial cells. Recombinant human HMGB1 stimulated an increase in HPGD expression in primary human nasal mucosal epithelial cells at a time-dependent manner. Additionally, increased phosphorylation levels of MEK and elevated RAGE expression were also observed at 12 hours, but decreased at 24 hours after the incubation of HMGB1. The increase in the expression of HPGD induced by HMGB1 in primary human nasal epithelial cells was partly inhibited with RAGE neutralizing antibody. Conclusion:Elevated HPGD expression is observed in CRSwNP, predominantly in macrophages and epithelial cells. HMGB1 regulates HPGD expression through the RAGE-MEK signaling pathway, potentially providing a new target for future regulation of PGE2levels in CRSwNP.
Humans
;
Antibodies, Neutralizing/metabolism*
;
Chronic Disease
;
HMGB1 Protein/metabolism*
;
Mitogen-Activated Protein Kinase Kinases/metabolism*
;
Nasal Mucosa/metabolism*
;
Nasal Polyps/metabolism*
;
Rhinitis
5.Expression of TUBB4B in mouse primary spermatocyte GC-2 cells and its regulatory effect on NF-κB and MAPK signaling pathway.
Tongjia LIU ; Wanlun WANG ; Ting ZHANG ; Shuang LIU ; Yanchao BIAN ; Chuanling ZHANG ; Rui XIAO
Journal of Southern Medical University 2023;43(6):1002-1009
OBJECTIVE:
To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells.
METHODS:
Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level.
RESULTS:
Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05).
CONCLUSIONS
TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.
Animals
;
Male
;
Mice
;
GTP-Binding Proteins/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
RNA, Messenger
;
Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism*
;
Signal Transduction
;
Spermatocytes
;
Tubulin/genetics*
6.Effect and mechanism of Bovis Calculus on ulcerative colitis by inhibiting IL-17/IL-17RA/Act1 signaling pathway.
Jian-Mei YUAN ; Dan-Ni LU ; Jia-Jun WANG ; Zhuo XU ; Yong LI ; Mi-Hong REN ; Jin-Xiu LI ; Dao-Yin GONG ; Jian WANG
China Journal of Chinese Materia Medica 2023;48(9):2500-2511
This study aimed to elucidate the effect and underlying mechanism of Bovis Calculus in the treatment of ulcerative colitis(UC) through network pharmacological prediction and animal experimental verification. Databases such as BATMAN-TCM were used to mine the potential targets of Bovis Calculus against UC, and the pathway enrichment analysis was conducted. Seventy healthy C57BL/6J mice were randomly divided into a blank group, a model group, a solvent model(2% polysorbate 80) group, a salazosulfapyridine(SASP, 0.40 g·kg~(-1)) group, and high-, medium-, and low-dose Bovis Calculus Sativus(BCS, 0.20, 0.10, and 0.05 g·kg~(-1)) groups according to the body weight. The UC model was established in mice by drinking 3% dextran sulfate sodium(DSS) solution for 7 days. The mice in the groups with drug intervention received corresponding drugs for 3 days before modeling by gavage, and continued to take drugs for 7 days while modeling(continuous administration for 10 days). During the experiment, the body weight of mice was observed, and the disease activity index(DAI) score was recorded. After 7 days of modeling, the colon length was mea-sured, and the pathological changes in colon tissues were observed by hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), and interleukin-17(IL-17) in colon tissues of mice were detected by enzyme-linked immunosorbent assay(ELISA). The mRNA expression of IL-17, IL-17RA, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, CXCL2, and CXCL10 was evaluated by real-time polymerase chain reaction(RT-PCR). The protein expression of IL-17, IL-17RA, Act1, p-p38 MAPK, and p-ERK1/2 was investigated by Western blot. The results of network pharmacological prediction showed that Bovis Calculus might play a therapeutic role through the IL-17 signaling pathway and the TNF signaling pathway. As revealed by the results of animal experiments, on the 10th day of drug administration, compared with the solvent model group, all the BCS groups showed significantly increased body weight, decreased DAI score, increased colon length, improved pathological damage of colon mucosa, and significantly inhibited expression of TNF-α,IL-6,IL-1β, and IL-17 in colon tissues. The high-dose BCS(0.20 g·kg~(-1)) could significantly reduce the mRNA expression levels of IL-17, Act1, TRAF2, TRAF5, TNF-α, IL-6, IL-1β, CXCL1, and CXCL2 in colon tissues of UC model mice, tend to down-regulate mRNA expression levels of IL-17RA and CXCL10, significantly inhibit the protein expression of IL-17RA,Act1,and p-ERK1/2, and tend to decrease the protein expression of IL-17 and p-p38 MAPK. This study, for the first time from the whole-organ-tissue-molecular level, reveals that BCS may reduce the expression of pro-inflammatory cytokines and chemokines by inhibiting the IL-17/IL-17RA/Act1 signaling pathway, thereby improving the inflammatory injury of colon tissues in DSS-induced UC mice and exerting the effect of clearing heat and removing toxins.
Mice
;
Animals
;
Colitis, Ulcerative/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Interleukin-17/pharmacology*
;
TNF Receptor-Associated Factor 2/pharmacology*
;
TNF Receptor-Associated Factor 5/metabolism*
;
Mice, Inbred C57BL
;
Signal Transduction
;
Colon
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
7.Analysis of the effect of midazolam on pain in a rat model of lumbar disc herniation based on the p38 MAPK signaling pathway.
Jian LIU ; Yu-Jun YE ; Shu-Min LIU ; Shuang LIU
China Journal of Orthopaedics and Traumatology 2023;36(1):55-60
OBJECTIVE:
To investigate the effect of midazolam on pain in lumbar disc herniation model rats based on p38 MAPK signaling pathway.
METHODS:
Fifty SPF-grade Sprague-Dawley healthy rats, half male and half female, were selected and randomly divided into normal group, model group, and low-dose, medium-dose, high-dose groups. Model group and low-dose, medium-dose, high-dose groups were initially modeled for lumbar disc herniation. Intraperitoneal injection of saline was performed in rats of normal and model groups; and in the low-dose, medium-dose, and high-dose groups, intraperitoneal injection of midazolam was performed with doses of 30, 60, and 90 mg/kg, respectively. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), β-endorphin (β-EP), substance P (SP), neuropeptide Y (NPY) were detected in the serum of rats by enzyme-linked immunoassay. The expression of p38 MAPK and matrix metalloproteinase-3(MMP-3) protein were detected by Western blot in the tissues of rats of each group.
RESULTS:
The levels of TNF-α, IL-1β and β-EP were higher and the level of 5-HT was lower in the model group than in the normal group(P<0.05);the levels of TNF-α, IL-1β and β-EP were lower and the level of 5-HT was higher in the low-dose, medium-dose and high-dose groups than in the model group(P<0.05). The levels of SP and NPY increased in the model group compared with the normal group (P<0.05) and the levels of SP and NPY decreased in the low-dose, medium-dose and high-dose groups compared with the model group (P<0.05). The expression of p38 MAPK and MMP-3 increased in the model group compared with the normal group (P<0.05); the expression of p38 MAPK and MMP-3 decreased in the low-dose, medium-dose and high-dose compared with the model group(P<0.05).
CONCLUSION
Midazolam may ameliorate the immune inflammatory response in rats with a model of lumbar disc herniation, possibly regulated through the p38MAPK signaling pathway.
Rats
;
Male
;
Female
;
Animals
;
Intervertebral Disc Displacement/pathology*
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 3/metabolism*
;
Midazolam
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
MAP Kinase Signaling System/physiology*
;
Pain
;
p38 Mitogen-Activated Protein Kinases/metabolism*
8.Kunxian Capsule Extract Inhibits Angiogenesis in Zebrafish Embryos via PI3K/AKT-MAPK-VEGF Pathway.
Rui-Jiao MA ; Maharajan KANNAN ; Qing XIA ; Shan-Shan ZHANG ; Peng-Fei TU ; Ke-Chun LIU ; Yun ZHANG
Chinese journal of integrative medicine 2023;29(2):137-145
OBJECTIVE:
To investigate the anti-angiogenic activity of Kunxian Capsule (KX) extract and explore the underlying molecular mechanism using zebrafish.
METHODS:
The KX extract was prepared with 5.0 g in 100 mL of 40% methanol followed by ultrasonication and freeze drying. Freeze dried KX extract of 10.00 mg was used as test stock solution. Triptolide and icariin, the key bioactive compounds of KX were analyzed using ultra-high performance liquid chromatography. The transgenic zebrafish Tg(flk1:GFP) embryos were dechorionated at 20-h post fertilization (hpf) and treated with PTK 787, and 3.5, 7, 14 and 21 µg/mL of KX extract, respectively. After 24-h post exposure (hpe), mortality and malformation (%), intersegmental vessels (ISV) formation, and mRNA expression level of angiogenic pathway genes including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) were determined. Further, the embryos at 72 hpf were treated with KX extract to observe the development of sub-intestinal vein (SIV) after 24 hpe.
RESULTS:
The chromatographic analysis of test stock solution of KX extract showed that triptolide and icariin was found as 0.089 mg/g and 48.74 mg/g, respectively, which met the requirements of the national drug standards. In zebrafish larvae experiment, KX extract significantly inhibited the ISV (P<0.01) and SIV formation (P<0.05). Besides, the mRNA expression analysis showed that KX extract could significantly suppress the expressions of PI3K and AKT, thereby inhibiting the mRNA levels of ERKs and MAPK. Moreover, the downstream signaling cascade affected the expression of VEGF and its receptors (VEGFR and VEGFR-2). FGF-2, a strong angiogenic factor, was also down-regulated by KX treatment in zebrafish larvae.
CONCLUSION
KX extract exhibited anti-angiogenic effects in zebrafish embryos by regulating PI3K/AKT-MAPK-VEGF pathway and showed promising potential for RA treatment.
Animals
;
Fibroblast Growth Factor 2
;
Human Umbilical Vein Endothelial Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Zebrafish
9.LASS2/TMSG1 overexpression inhibits proliferation and promotes apoptosis of human lung cancer A549 cells possibly by upregulating ceramide and p38 MAPK to activate a signaling cascade.
Zheng Lu LIU ; Cheng Rui XUAN ; Xi Ran HAN ; Ze Ze ZHENG ; Rui XIAO ; Lu Ri BAO ; Xiao Yan XU
Journal of Southern Medical University 2023;43(2):166-174
OBJECTIVE:
To investigate the effects of LASS2/TMSG1 gene overexpression on proliferation and apoptosis of human lung cancer A549 cells and explore the possible mechanism.
METHODS:
We examined LASS2/TMSG1 expression level in a previously constructed A549 cell line overexpressing LASS2/TMSG1 using Western blotting. The proliferation and apoptosis of the cells were detected using colony-forming assay, CCK-8 assay, Hoechst/PI double staining and flow cytometry. Fourteen nude mice were randomized into 2 groups (n=7) to receive subcutaneous injection of A549 cells with or without LASS2/TMSG1 overexpression on the back of the neck, and the cell proliferation in vivo was observed. The expression levels of p38 MAPK protein and p-p38 MAPK protein in the xenografts were detected with Western blotting. ELISA was used to detect the levels of ceramide and p38 MAPK protein in cultured A549 cell supernatants and the xenografts in nude mice.
RESULTS:
Compared with the negative control cells, A549 cells with LASS2/TMSG1 overexpression had significantly lowered proliferation ability in vitro with increased early apoptosis rate (P < 0.05), and showed obvious growth inhibition after inoculation in nude mice(P < 0.05). Western blotting showed that in both cultured A549 cells and the xenografts in nude mice, LASS2/TMSG1 gene overexpression significantly increased the expression levels of p38 MAPK protein and p-p38 MAPK protein (P < 0.05); the results of ELISA also revealed significantly increased levels of ceramide and p38 MAPK protein in the cell supernatant andxenografts as well (P < 0.05).
CONCLUSION
Overexpression of LASS2/TMSG1 gene can significantly inhibit the proliferation and promote early apoptosis of human lung cancer A549 cells both in vitro and in vivo possibly by upregulating the expressions of ceramide and p38 MAPK protein to activate a signal transduction cascade.
Animals
;
Humans
;
Mice
;
A549 Cells
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Lung Neoplasms
;
Membrane Proteins/metabolism*
;
Mice, Nude
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Signal Transduction
;
Tumor Suppressor Proteins/metabolism*
10.Identification of BRAF V600E mutation in odontogenic tumors by high-performance MALDI-TOF analysis.
Lucrezia TOGNI ; Antonio ZIZZI ; Roberta MAZZUCCHELLI ; Andrea SANTARELLI ; Corrado RUBINI ; Marco MASCITTI
International Journal of Oral Science 2022;14(1):22-22
Odontogenic tumors are rare lesions with unknown etiopathogenesis. Most of them are benign, but local aggressiveness, infiltrative potential, and high recurrence rate characterize some entities. The MAP-kinase pathway activation can represent a primary critical event in odontogenic tumorigenesis. Especially, the BRAF V600E mutation has been involved in 80-90% of ameloblastic lesions, offering a biological rationale for developing new targeted therapies. The study aims to evaluate the BRAF V600E mutation in odontogenic lesions, comparing three different detection methods and focusing on the Sequenom MassARRAY System. 81 surgical samples of odontogenic lesions were subjected to immunohistochemical analysis, Sanger Sequencing, and Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (Sequenom). The BRAF V600E mutation was revealed only in ameloblastoma samples. Moreover, the presence of BRAF V600E was significantly associated with the mandibular site (ρ = 0.627; P value <0.001) and the unicystic histotype (ρ = 0.299, P value <0.001). However, any significant difference of 10-years disease-free survival time was not revealed. Finally, Sequenom showed to be a 100% sensitive and 98.1% specific, suggesting its high-performance diagnostic accuracy. These results suggest the MAP-kinase pathway could contribute to ameloblastic tumorigenesis. Moreover, they could indicate the anatomical specificity of the driving mutations of mandibular ameloblastomas, providing a biological rational for developing new targeted therapies. Finally, the high diagnostic accuracy of Sequenom was confirmed.
Ameloblastoma/pathology*
;
Carcinogenesis
;
Humans
;
Mitogen-Activated Protein Kinases/genetics*
;
Mutation
;
Odontogenic Tumors/pathology*
;
Proto-Oncogene Proteins B-raf/metabolism*
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Result Analysis
Print
Save
E-mail