1.ASIC1a contributes to the symptom of pain in a rat model of chronic prostatitis.
Song FAN ; Zong-Yao HAO ; Li ZHANG ; Jun ZHOU ; Yi-Fei ZHANG ; Shen TAI ; Xian-Sheng ZHANG ; Chao-Zhao LIANG
Asian Journal of Andrology 2018;20(3):300-305
		                        		
		                        			
		                        			This study aims to validate our hypothesis that acid-sensing ion channels (ASICs) may contribute to the symptom of pain in patients with chronic prostatitis (CP). We first established a CP rat model, then isolated the L5-S2 spinal dorsal horn neurons for further studies. ASIC1a was knocked down and its effects on the expression of neurogenic inflammation-related factors in the dorsal horn neurons of rat spinal cord were evaluated. The effect of ASIC1a on the Ca2+ ion concentration in the dorsal horn neurons of rat spinal cord was measured by the intracellular calcium ([Ca2+]i) intensity. The effect of ASIC1a on the p38/mitogen-activated protein kinase (MAPK) signaling pathway was also determined. ASIC1a was significantly upregulated in the CP rat model as compared with control rats. Acid-induced ASIC1a expression increased [Ca2+]i intensity in the dorsal horn neurons of rat spinal cord. ASIC1a also increased the levels of neurogenic inflammation-related factors and p-p38 expression in the acid-treated dorsal horn neurons. Notably, ASIC1a knockdown significantly decreased the expression of pro-inflammatory cytokines. Furthermore, the levels of p-p38 and pro-inflammatory cytokines in acid-treated dorsal horn neurons were significantly decreased in the presence of PcTx-1, BAPTA-AM, or SB203580. Our results showed that ASIC1a may contribute to the symptom of pain in patients with CP, at least partially, by regulating the p38/MAPK signaling pathway.
		                        		
		                        		
		                        		
		                        			Acid Sensing Ion Channel Blockers/pharmacology*
		                        			;
		                        		
		                        			Acid Sensing Ion Channels/genetics*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Chelating Agents/pharmacology*
		                        			;
		                        		
		                        			Chronic Disease
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Egtazic Acid/pharmacology*
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Imidazoles/pharmacology*
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			MAP Kinase Signaling System/genetics*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Pain/genetics*
		                        			;
		                        		
		                        			Peptides/pharmacology*
		                        			;
		                        		
		                        			Phosphorylation/drug effects*
		                        			;
		                        		
		                        			Posterior Horn Cells/metabolism*
		                        			;
		                        		
		                        			Prostatitis/complications*
		                        			;
		                        		
		                        			Protein Kinase Inhibitors/pharmacology*
		                        			;
		                        		
		                        			Pyridines/pharmacology*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Spider Venoms/pharmacology*
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/metabolism*
		                        			
		                        		
		                        	
2.alpha-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-Infected Gastric Epithelial AGS Cells.
Ji Hyun CHOI ; Soon Ok CHO ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(1):260-264
		                        		
		                        			
		                        			The epithelial cytokine response, associated with reactive oxygen species (ROS), is important in Helicobacter pylori (H. pylori)-induced inflammation. H. pylori induces the production of ROS, which may be involved in the activation of mitogen-activated protein kinases (MAPK), janus kinase/signal transducers and activators of transcription (Jak/Stat), and oxidant-sensitive transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), and thus, expression of interleukin-8 (IL-8) in gastric epithelial cells. alpha-lipoic acid, a naturally occurring thiol compound, is a potential antioxidant. It shows beneficial effects in treatment of oxidant-associated diseases including diabetes. The present study is purposed to investigate whether alpha-lipoic acid inhibits expression of inflammatory cytokine IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-infected gastric epithelial cells. Gastric epithelial AGS cells were pretreated with or without alpha-lipoic acid for 2 h and infected with H. pylori in a Korean isolate (HP99) at a ratio of 300:1. IL-8 mRNA expression was analyzed by RT-PCR analysis. IL-8 levels in the medium were determined by enzyme-linked immunosorbent assay. NF-kappaB-DNA binding activity was determined by electrophoretic mobility shift assay. Phospho-specific and total forms of MAPK and Jak/Stat were assessed by Western blot analysis. ROS levels were determined using dichlorofluorescein fluorescence. As a result, H. pylori induced increases in ROS levels, mRNA, and protein levels of IL-8, as well as the activation of MAPK [extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase 1/2 (JNK1/2), p38], Jak/Stat (Jak1/2, Stat3), and NF-kappaB in AGS cells, which was inhibited by alpha-lipoic acid. In conclusion, alpha-lipoic acid may be beneficial for prevention and/or treatment of H. pylori infection-associated gastric inflammation.
		                        		
		                        		
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Epithelial Cells/metabolism
		                        			;
		                        		
		                        			Gastric Mucosa/*drug effects/metabolism/microbiology
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			;
		                        		
		                        			Helicobacter Infections/immunology/*metabolism
		                        			;
		                        		
		                        			Helicobacter pylori/drug effects/*pathogenicity
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-8/genetics/*metabolism
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			Janus Kinase 1
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases/*biosynthesis
		                        			;
		                        		
		                        			NF-kappa B/*metabolism
		                        			;
		                        		
		                        			RNA, Messenger/isolation & purification/metabolism
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism
		                        			;
		                        		
		                        			STAT3 Transcription Factor
		                        			;
		                        		
		                        			Stomach/metabolism/*microbiology
		                        			;
		                        		
		                        			Thioctic Acid/*pharmacology
		                        			
		                        		
		                        	
3.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
4.A combination of four effective components derived from Sheng-mai san attenuates hydrogen peroxide-induced injury in PC12 cells through inhibiting Akt and MAPK signaling pathways.
Guo-Sheng CAO ; Shao-Xia LI ; Yan WANG ; Ying-Qiong XU ; Yan-Ni LV ; Jun-Ping KOU ; Bo-Yang YU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(7):508-517
		                        		
		                        			
		                        			The present study was designed to investigate whether a combination of four effective components derived from Sheng-mai san (SMXZF; ginsenoside Rb1: ginsenoside Rg1: DT-13: Schizandrol A as 6 : 9 : 4 : 5) could attenuate hydrogen peroxide (H2O2)-induced injury in PC12 cells, focusing on the Akt and MAPK pathways . The PC12 cells were exposed to H2O2 (400 μmol·L(-1)) for 1 h in the presence or absence of SMXZF pre-treatment for 24 h. Cell viability was measured by MTT assay. The efflux of lactate dehydrogenase (LDH), the intracellular content of malondialdehyde (MDA), the activities of superoxide dismutase (SOD), and caspase-3 were also determined. Cell apoptosis was measured by Hoechst 33342 staining and Annexin V-FITC/PI staining method. The expression of Bcl-2, Bax, cleaved caspase-3, Akt, and MAPKs were detected by Western blotting analyses. SMXZF pretreatment significantly increased the cell viability and SOD activity and improved the cell morphological changes, while reduced the levels of LDH and MDA at the concentrations of 0.1, 1 and 10 μg·mL(-1). SMXZF also inhibited H2O2-induced apoptosis in PC12 cells. Moreover, SMXZF reduced the activity of caspase-3, up-regulated the protein ratio of Bcl-2 and Bax and inhibited the expression of cleaved caspase-3, p-Akt, p-p38, p-JNK and p-ERK1/2 in H2O2-induced PC12 cells. Co-incubation of Akt inhibitor or p38 inhibitor partly attenuated the protection of SMXZF against H2O2-injured PC12 cells. In conclusion, our findings suggested that SMXZF attenuated H2O2-induced injury in PC12 cells by inhibiting Akt and MAPKs signaling pathways, which might shed insights on its neuroprotective mechanism.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Hydrogen Peroxide
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			PC12 Cells
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
5.Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop.
Liang CHEN ; Zhimin PENG ; Qinghang MENG ; Maureen MONGAN ; Jingcai WANG ; Maureen SARTOR ; Jing CHEN ; Liang NIU ; Mario MEDVEDOVIC ; Winston KAO ; Ying XIA
Protein & Cell 2016;7(5):338-350
		                        		
		                        			
		                        			Using forward and reverse genetics and global gene expression analyses, we explored the crosstalk between the IκB kinase β (IKKβ) and the transforming growth factor β (TGFβ) signaling pathways. We show that in vitro ablation of Ikkβ in fibroblasts led to progressive ROS accumulation and TGFβ activation, and ultimately accelerated cell migration, fibroblast-myofibroblast transformation and senescence. Mechanistically, the basal IKKβ activity was required for anti-oxidant gene expression and redox homeostasis. Lacking this activity, IKKβ-null cells showed ROS accumulation and activation of stress-sensitive transcription factor AP-1/c-Jun. AP-1/c-Jun activation led to up-regulation of the Tgfβ2 promoter, which in turn further potentiated intracellular ROS through the induction of NADPH oxidase (NOX). These data suggest that by blocking the autocrine amplification of a ROS-TGFβ loop IKKβ plays a crucial role in the prevention of fibroblast-myofibroblast transformation and senescence.
		                        		
		                        		
		                        		
		                        			Adenoviridae
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Autocrine Communication
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Cellular Senescence
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			I-kappa B Kinase
		                        			;
		                        		
		                        			deficiency
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Myofibroblasts
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			NADPH Oxidases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transcription Factor AP-1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transforming Growth Factor beta
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
6.Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells.
Beom Su KIM ; Hyo Jin KANG ; Ji Yun PARK ; Jun LEE
Experimental & Molecular Medicine 2015;47(1):e128-
		                        		
		                        			
		                        			Fucoidan has attracted attention as a potential drug because of its biological activities, which include osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of fucoidan in human alveolar bone marrow-derived mesenchymal stem cells (hABM-MSCs) remain largely unknown. We investigated the action of fucoidan on osteoblast differentiation in hABM-MSCs and its impact on signaling pathways. Its effect on proliferation was determined using the crystal violet staining assay. Osteoblast differentiation was evaluated based on alkaline phosphatase (ALP) activity and the mRNA expression of multiple osteoblast markers. Calcium accumulation was determined by Alizarin red S staining. We found that fucoidan induced hABM-MSC proliferation. It also significantly increased ALP activity, calcium accumulation and the expression of osteoblast-specific genes, such as ALP, runt-related transcription factor 2, type I collagen-alpha 1 and osteocalcin. Moreover, fucoidan induced the expression of bone morphogenetic protein 2 (BMP2) and stimulated the activation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase by increasing phosphorylation. However, the effect of fucoidan on osteogenic differentiation was inhibited by specific inhibitors of ERK (PD98059) and JNK (SP600125) but not p38 (SB203580). Fucoidan enhanced BMP2 expression and Smad 1/5/8, ERK and JNK phosphorylation. Moreover, the effect of fucoidan on osteoblast differentiation was diminished by BMP2 knockdown. These results indicate that fucoidan induces osteoblast differentiation through BMP2-Smad 1/5/8 signaling by activating ERK and JNK, elucidating the molecular basis of the osteogenic effects of fucoidan in hABM-MSCs.
		                        		
		                        		
		                        		
		                        			Bone Morphogenetic Protein 2/genetics/*metabolism
		                        			;
		                        		
		                        			Calcium/metabolism
		                        			;
		                        		
		                        			Cell Differentiation/drug effects
		                        			;
		                        		
		                        			Cell Proliferation/drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases/*metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation/drug effects
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases/*metabolism
		                        			;
		                        		
		                        			Mesenchymal Stromal Cells/cytology/*drug effects/*metabolism
		                        			;
		                        		
		                        			Osteoblasts/cytology/drug effects/metabolism
		                        			;
		                        		
		                        			Osteogenesis/drug effects
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Polysaccharides/*pharmacology
		                        			;
		                        		
		                        			Protein Kinase Inhibitors/pharmacology
		                        			;
		                        		
		                        			RNA, Messenger/genetics
		                        			;
		                        		
		                        			Signal Transduction/*drug effects
		                        			;
		                        		
		                        			Smad Proteins/*metabolism
		                        			
		                        		
		                        	
7.Inhibitory effects of 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside on angiotensin II-induced proliferation of vascular smooth muscle cells.
Xiao-le XU ; Yan-juan HUANG ; Dan-yan LING ; Wei ZHANG
Chinese journal of integrative medicine 2015;21(3):204-210
OBJECTIVETo investigate the effect of 2,3,4',5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the root of Polygonum multiflorum, on angiotensin II (Ang II)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and to identify the potential mechanism.
METHODSCell proliferation and cell cycle were determined by cell counting, 5-bromo-2'-deoxyuridine incorporation assay, proliferating cell nuclear antigen protein expression and flow cytometry. Levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), mitogenic extracellular kinase 1/2 (MEK1/2) and Src in VSMCs were measured by Western blot. The expression of c-fos, c-jun and c-myc mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR). Intracellular reactive oxygen species (ROS) was measured by fluorescence assay.
RESULTSTSG significantly inhibited Ang II-induced VSMCs proliferation and arrested cells in the G /S checkpoint (P<0.05 or P<0.01). TSG decreased the levels of phosphorylated ERK1/2, MEK1/2 and Src in VSMCs (P<0.05 or P<0.01). TSG also suppressed c-fos, c-jun and c-myc mRNA expression <0.05 or P<0.01). In addition, the intracellular ROS was reduced by TSG (P<0.01).
CONCLUSIONSTSG inhibited Ang II-induced VSMCs proliferation. Its antiproliferative effect might be associated with down-regulation of intracellular ROS, followed by the suppression of the Src-MEK1/2-ERK1/2 signal pathway, and hence, blocking cell cycle progression.
Angiotensin II ; pharmacology ; Animals ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Glucosides ; pharmacology ; Intracellular Space ; metabolism ; Male ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; cytology ; drug effects ; Phosphorylation ; drug effects ; Proliferating Cell Nuclear Antigen ; metabolism ; Proto-Oncogene Proteins ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Stilbenes ; pharmacology ; Superoxide Dismutase ; metabolism
8.Effect of panax notoginseng saponins injection on the p38MAPK pathway in lung tissue in a rat model of hypoxic pulmonary hypertension.
Shan ZHAO ; Meng-xiao ZHENG ; Hai-e CHEN ; Cheng-yun WU ; Wan-tie WANG
Chinese journal of integrative medicine 2015;21(2):147-151
OBJECTIVETo investigate the effect of panax notoginseng saponins (PNS) injection on pulmonary artery pressure and the expression of p38MAPK in lung tissue of rats subjected to chronic hypoxia.
METHODSThirty adult male Sprague Dawley rats were randomly divided into three groups (ten in each group): rats in control group were exposed to normoxic condition and the rats in hypoxia group and PNS group were subjected to 4-week hypoxia, and PNS injection (50 mg · kg(-1) · d(-1)) was administrated intraperitoneally at 30 min in the PNS group daily before the rats were kept in the hypoxic chamber, while rats in the other two groups received equal dose of normal saline instead. After chronic hypoxia, mean pulmonary artery pressure (mPAP) and mean carotid artery pressure (mCAP) were measured. The heart and lung tissues were harvested, and right ventricle (RV) and left ventricle plus ventricular septum (LV+S) were weighed to calculate the ratio of RV/(LV+S). The expression of p38MAPK mRNA was determined by reverse transcription-polymerase chain reaction, the quantity of phosphorylated p38MAPK (p-p38MAPK) in rat lung tissues and pulmonary arterioles was determined by Western blot and immunohistochemistry.
RESULTSCompared with the control group, mPAP and the ratio of RV/(LV+S) in the hypoxia group were increased, the expression of p-p38MAPK in pulmonary arterioles and p38MAPK mRNA in the lung were higher (P<0.05). The changes of these parameters in the hypoxia group were significantly attenuated by PNS treatment (P<0.05).
CONCLUSIONPNS injection was shown to prevent hypoxic pulmonary hypertension at least partly by regulating p38MAPK pathway.
Animals ; Arterioles ; drug effects ; metabolism ; Blood Pressure ; drug effects ; Blotting, Western ; Carotid Arteries ; drug effects ; physiopathology ; Disease Models, Animal ; Heart Ventricles ; drug effects ; physiopathology ; Hemodynamics ; drug effects ; Hypertension, Pulmonary ; complications ; enzymology ; physiopathology ; Hypoxia ; complications ; enzymology ; physiopathology ; Injections ; Lung ; drug effects ; enzymology ; pathology ; physiopathology ; MAP Kinase Signaling System ; drug effects ; Male ; Panax notoginseng ; chemistry ; Pulmonary Artery ; drug effects ; physiopathology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Saponins ; administration & dosage ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism
9.Effect of siRNA silencing the role of JNK gene in excessive endoplasmic reticulum stress on lung ischemia/reperfusion injury.
Mao-Lin HAO ; Shan ZHAO ; Hai-E CHEN ; Dan CHEN ; Dong SONG ; Jin-Bo HE ; Yang WANG ; Wan-Tie WANG
Chinese Journal of Applied Physiology 2014;30(1):48-53
OBJECTIVETo investigate the effect of siRNA silencing the role of C-Jun N-terminal Kinase (JNK) gene in excessive endoplasmic reticulum stress on lung ischemia/reperfusion injury.
METHODSMouse model of pulmonary ischemia reperfusion injury (PIRI) in situ was established with unilateral lung in vivo. Seventy experimental mice were randomly allocated into seven groups (n = 10): Sham group (Sham group), ischemia reperfusion group (I/R), PBS+ Lipofectamine2000TM transfection reagent group (I/R + PBS+ Lipo group), negative control group (I/R+ SCR group), JNK-siRNA group (I/R + siRNA(JNK1), siRNA(JNK2), siRNA(JNK3)). Mice were euthanized after experimental time out, and left lung tissue was extracted. Wet/dry lung weight ratio (W/D) and total lung water content (TLW) were tested. Light microscope, alveolar damage quantitative evaluation index (IQA) and electron microscope were observed. The expression levels of JNK and glucose regulatex protein(GRP78) were detected by RT-PCR and Western blot. Apoptosis of lung tissue was determined by TUNEL.
RESULTSCompared with Sham group, all indicators above of I/R + PBS + Lipo group and I/R + SCR group were significantly increased (P < 0.01), and compared with I/R group, those indicators of the three groups all had no notable difference; those indicators were not statistically different between I/R + PBS + Lipo group and I/R + SCR group, and compared to the three groups, the above indicators in JNK-siRNA group were lower (P < 0.05, P < 0.01) except that the expression levels of GRP78 was not statistically different.
CONCLUSIONI/R induces excessive ERS in lung tissue, in which JNK pathway participates in apoptosis, leading to lung tissue injury.
Animals ; Apoptosis ; Endoplasmic Reticulum Stress ; Heat-Shock Proteins ; metabolism ; JNK Mitogen-Activated Protein Kinases ; genetics ; Lung ; physiopathology ; Lung Injury ; genetics ; MAP Kinase Signaling System ; Mice ; RNA, Small Interfering ; Reperfusion Injury ; genetics
10.Zhuanggu Jianxi Decoction () limits interleukin-1 β-induced degeneration chondrocytes via the caveolin-p38 MAPK signal pathway.
Hu YAN ; You-xin SU ; Xue-yi LIN ; Bao-jun CHEN ; Qing ZHANG ; Zi-yi ZHANG ; Yi-ru WANG ; Ya-nan LI ; Mei-li LU ; Zhen HE ; Lu SHENG ; Wen-ting WANG
Chinese journal of integrative medicine 2014;20(5):353-359
OBJECTIVETo evaluate the effect of Zhuanggu Jianxi Decoction (, ZGJXD) on interleukin-1 β (IL-1 β)-induced degeneration of chondrocytes (CDs) as well as the activation of caveolin-p38 mitogen-activated protein kinase (MAPK) signal pathway, investigating the possible molecular mechanism that ZGJXD treats osteoarthritis.
METHODSSerum pharmacology was applied in the present study, where ZGJXD was orally administrated to New Zealand rabbits and then ZGJXD containing serum (ZGJXD-S) was collected for following in vitro experiments. CDs were isolated aseptically from New Zealand rabbits and then cultured in vitro. Upon IL-1 β stimulation, the degeneration of CDs was verified by inverted microscope, toluidine blue stain and type II collagen immunocytochemistry. After IL-1 β-stimulated CDs were intervened with blank control serum, ZGJXD-S, together with or without SB203580 (a specific inhibitor of p38 MAPK) for 48 h, caveolin-1 protein expression and the phosphorylation level of p38 were determined by Western blotting, and the mRNA expression of IL-1 β, tumor necrosis factor α (TNF-α), matrix metalloproteinase 3 (MMP-3) and MMP-13 were examined by real-time polymerase chain reaction.
RESULTSIL-1 β stimulation induced degeneration of CDs, increased caveolin-1 expression and p38 phosphorylation, up-regulated the mRNA level of IL-1 β, TNF-α, MMP-3 and MMP-13. However, the IL-1 β-induced activation of caveolin-p38 signaling and alteration in the expression of p38 downstream target genes were suppressed by ZGJXD-S and/or SB203580 in CDs.
CONCLUSIONZGJXD can prevent CDs degeneration via inhibition of caveolin-p38 MAPK signal pathway, which might be one of the mechanisms that ZGJXD treats osteoarthritis.
Animals ; Base Sequence ; Blotting, Western ; Caveolins ; metabolism ; Chondrocytes ; drug effects ; enzymology ; metabolism ; DNA Primers ; Drugs, Chinese Herbal ; pharmacology ; Gene Expression Profiling ; Interleukin-1beta ; physiology ; MAP Kinase Signaling System ; Male ; RNA, Messenger ; genetics ; Rabbits ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism
            
Result Analysis
Print
Save
E-mail