1.Cytokine receptor-like factor 1 (CRLF1) promotes cardiac fibrosis via ERK1/2 signaling pathway.
Shenjian LUO ; Zhi YANG ; Ruxin CHEN ; Danming YOU ; Fei TENG ; Youwen YUAN ; Wenhui LIU ; Jin LI ; Huijie ZHANG
Journal of Zhejiang University. Science. B 2023;24(8):682-697
Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease. Anti-fibrosis treatment is a significant therapy for heart disease, but there is still no thorough understanding of fibrotic mechanisms. This study was carried out to ascertain the functions of cytokine receptor-like factor 1 (CRLF1) in cardiac fibrosis and clarify its regulatory mechanisms. We found that CRLF1 was expressed predominantly in cardiac fibroblasts. Its expression was up-regulated not only in a mouse heart fibrotic model induced by myocardial infarction, but also in mouse and human cardiac fibroblasts provoked by transforming growth factor-β1 (TGF-β1). Gain- and loss-of-function experiments of CRLF1 were carried out in neonatal mice cardiac fibroblasts (NMCFs) with or without TGF-β1 stimulation. CRLF1 overexpression increased cell viability, collagen production, cell proliferation capacity, and myofibroblast transformation of NMCFs with or without TGF-β1 stimulation, while silencing of CRLF1 had the opposite effects. An inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and different inhibitors of TGF-β1 signaling cascades, comprising mothers against decapentaplegic homolog (SMAD)-dependent and SMAD-independent pathways, were applied to investigate the mechanisms involved. CRLF1 exerted its functions by activating the ERK1/2 signaling pathway. Furthermore, the SMAD-dependent pathway, not the SMAD-independent pathway, was responsible for CRLF1 up-regulation in NMCFs treated with TGF-β1. In summary, activation of the TGF-β1/SMAD signaling pathway in cardiac fibrosis increased CRLF1 expression. CRLF1 then aggravated cardiac fibrosis by activating the ERK1/2 signaling pathway. CRLF1 could become a novel potential target for intervention and remedy of cardiac fibrosis.
Animals
;
Humans
;
Mice
;
Disease Models, Animal
;
Fibroblasts/metabolism*
;
Fibrosis
;
MAP Kinase Signaling System
;
Mitogen-Activated Protein Kinase 3/metabolism*
;
Myocardial Infarction/metabolism*
;
Receptors, Cytokine/metabolism*
;
Signal Transduction
;
Transforming Growth Factor beta1/pharmacology*
2.Extracellular Signal-regulated Kinase 1/2 Signaling Regulates Cell Invasion:a Review.
Xin-Ying GE ; Lu-Lu SHAO ; Xue-Lin GAO ; Rong-Xia HE
Acta Academiae Medicinae Sinicae 2023;45(1):155-160
Extracellular signal-regulated kinase 1/2 (ERK1/2) is a serine/threoninekinase involved in the signal transduction cascade of Ras-Raf-mitogen-activated protein kinase (MEK)-ERK.It participates in the cell growth,proliferation and even invasion by regulating gene transcription and expression.The occurrence of a variety of diseases such as lung cancer,liver cancer,ovarian cancer,cervical cancer,endometriosis,and preeclampsia,as well the metastasis and disease progression,is closely associated with the regulation of cell invasion by ERK1/2 signaling pathway.Therefore,exploring the regulation of ERK1/2 signaling on cell invasion and its role in pathogenesis of diseases may help to develop more effective treatment schemes.This article introduces recent progress in the regulation of ERK1/2 signaling on cell invasion and the role of such regulation in diseases,with a view to give new insights into the clinical treatment of ERK 1/2-related diseases.
Female
;
Pregnancy
;
Humans
;
Mitogen-Activated Protein Kinase 3
;
Signal Transduction
;
Mitogen-Activated Protein Kinases
;
Cell Cycle
;
Cell Proliferation
3.Analysis of the effect of midazolam on pain in a rat model of lumbar disc herniation based on the p38 MAPK signaling pathway.
Jian LIU ; Yu-Jun YE ; Shu-Min LIU ; Shuang LIU
China Journal of Orthopaedics and Traumatology 2023;36(1):55-60
OBJECTIVE:
To investigate the effect of midazolam on pain in lumbar disc herniation model rats based on p38 MAPK signaling pathway.
METHODS:
Fifty SPF-grade Sprague-Dawley healthy rats, half male and half female, were selected and randomly divided into normal group, model group, and low-dose, medium-dose, high-dose groups. Model group and low-dose, medium-dose, high-dose groups were initially modeled for lumbar disc herniation. Intraperitoneal injection of saline was performed in rats of normal and model groups; and in the low-dose, medium-dose, and high-dose groups, intraperitoneal injection of midazolam was performed with doses of 30, 60, and 90 mg/kg, respectively. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), β-endorphin (β-EP), substance P (SP), neuropeptide Y (NPY) were detected in the serum of rats by enzyme-linked immunoassay. The expression of p38 MAPK and matrix metalloproteinase-3(MMP-3) protein were detected by Western blot in the tissues of rats of each group.
RESULTS:
The levels of TNF-α, IL-1β and β-EP were higher and the level of 5-HT was lower in the model group than in the normal group(P<0.05);the levels of TNF-α, IL-1β and β-EP were lower and the level of 5-HT was higher in the low-dose, medium-dose and high-dose groups than in the model group(P<0.05). The levels of SP and NPY increased in the model group compared with the normal group (P<0.05) and the levels of SP and NPY decreased in the low-dose, medium-dose and high-dose groups compared with the model group (P<0.05). The expression of p38 MAPK and MMP-3 increased in the model group compared with the normal group (P<0.05); the expression of p38 MAPK and MMP-3 decreased in the low-dose, medium-dose and high-dose compared with the model group(P<0.05).
CONCLUSION
Midazolam may ameliorate the immune inflammatory response in rats with a model of lumbar disc herniation, possibly regulated through the p38MAPK signaling pathway.
Rats
;
Male
;
Female
;
Animals
;
Intervertebral Disc Displacement/pathology*
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 3/metabolism*
;
Midazolam
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
MAP Kinase Signaling System/physiology*
;
Pain
;
p38 Mitogen-Activated Protein Kinases/metabolism*
4.Kunxian Capsule Extract Inhibits Angiogenesis in Zebrafish Embryos via PI3K/AKT-MAPK-VEGF Pathway.
Rui-Jiao MA ; Maharajan KANNAN ; Qing XIA ; Shan-Shan ZHANG ; Peng-Fei TU ; Ke-Chun LIU ; Yun ZHANG
Chinese journal of integrative medicine 2023;29(2):137-145
OBJECTIVE:
To investigate the anti-angiogenic activity of Kunxian Capsule (KX) extract and explore the underlying molecular mechanism using zebrafish.
METHODS:
The KX extract was prepared with 5.0 g in 100 mL of 40% methanol followed by ultrasonication and freeze drying. Freeze dried KX extract of 10.00 mg was used as test stock solution. Triptolide and icariin, the key bioactive compounds of KX were analyzed using ultra-high performance liquid chromatography. The transgenic zebrafish Tg(flk1:GFP) embryos were dechorionated at 20-h post fertilization (hpf) and treated with PTK 787, and 3.5, 7, 14 and 21 µg/mL of KX extract, respectively. After 24-h post exposure (hpe), mortality and malformation (%), intersegmental vessels (ISV) formation, and mRNA expression level of angiogenic pathway genes including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinases (ERKs), mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF-2) were determined. Further, the embryos at 72 hpf were treated with KX extract to observe the development of sub-intestinal vein (SIV) after 24 hpe.
RESULTS:
The chromatographic analysis of test stock solution of KX extract showed that triptolide and icariin was found as 0.089 mg/g and 48.74 mg/g, respectively, which met the requirements of the national drug standards. In zebrafish larvae experiment, KX extract significantly inhibited the ISV (P<0.01) and SIV formation (P<0.05). Besides, the mRNA expression analysis showed that KX extract could significantly suppress the expressions of PI3K and AKT, thereby inhibiting the mRNA levels of ERKs and MAPK. Moreover, the downstream signaling cascade affected the expression of VEGF and its receptors (VEGFR and VEGFR-2). FGF-2, a strong angiogenic factor, was also down-regulated by KX treatment in zebrafish larvae.
CONCLUSION
KX extract exhibited anti-angiogenic effects in zebrafish embryos by regulating PI3K/AKT-MAPK-VEGF pathway and showed promising potential for RA treatment.
Animals
;
Fibroblast Growth Factor 2
;
Human Umbilical Vein Endothelial Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Zebrafish
5.Methylene blue reduces IL-1β levels by enhancing ERK1/2 and AKT phosphorylation to improve diabetic retinopathy in rats.
Huade MAI ; Shenhong GU ; Biwei FU ; Xinbo JI ; Minghui CHEN ; Juming CHEN ; Yunbo ZHANG ; Yunyun LIN ; Chenghong LIU ; Yanling SONG
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):423-428
Objective To investigate the neuroprotective effect of methylene blue on diabetic retinopathy in rats. Methods Thirty SD rats were randomly divided into blank, control and experimental groups. The control and experimental groups were induced with diabetes by streptozotocin (STZ) intraperitoneal injection. After 6 weeks of successful modeling, the experimental group received intravitreal injection of methylene blue at a dose of [0.2 mg/(kg.d)], while the control group received an equal amount of dimethyl sulfoxide (DMSO) intravitreal injection, both continuously injected for 7 days. ELISA was used to detect the levels of retinal superoxide dismutase (SOD), 8-iso-prostaglandin F2alpha (iPF2α) and interleukin-1β (IL-1β) in rats. Western blot analysis was used to detect the expression of retinal extracellular signal-regulated kinase 1/2 phosphorylation (p-ERK1/2) and phosphorylated protein kinase B (p-AKT), and PAS staining was used to detect retinal morphological changes. Results Compared with the blank group rats, the retinal SOD activity in the control and experimental group rats was significantly reduced. iPF2α, IL-1β and p-ERK1/2 level increased, while p-AKT level decreased. Compared with the control group, the SOD activity of the experimental group rats increased. iPF2α and IL-1β level went down, while p-ERK1/2 and p-AKT level went up significantly. The overall thickness of the retinal layer and the number of retinal ganglion cells were significantly reduced. Conclusion Methylene blue improves diabetic retinopathy in rats by reducing retinal oxidative stress and enhancing ERK1/2 and AKT phosphorylation.
Rats
;
Animals
;
Diabetic Retinopathy/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mitogen-Activated Protein Kinase 3/metabolism*
;
Interleukin-1beta/metabolism*
;
Methylene Blue/pharmacology*
;
Phosphorylation
;
Rats, Sprague-Dawley
;
MAP Kinase Signaling System
;
Diabetes Mellitus, Experimental/drug therapy*
;
Superoxide Dismutase/metabolism*
6.Effect of Doxycycline on Intrinsic Apoptosis of Myeloma Cell Line H929 and Its Mechanism.
Hai-Lu LI ; Xiao-Ming FEI ; Yu TANG ; Yuan-Lin YANG ; Li-Xia WANG ; Jia-Wei GENG
Journal of Experimental Hematology 2022;30(2):441-448
OBJECTIVE:
To investigate the mechanism of the in vitro toxicity of doxycycline to myeloma cell line H929 and also the possible pathway involved its toxicity.
METHODS:
Myeloma cell line H929 was treated with DOX, MEK inhibitor U0126 or RAS agonist ML-098, either alone or in combination. Then, the expression of p-MEK, caspase-3, caspase-9 and c-Jun in H929 were used to detected by Western blot; the cells proliferation and apoptosis were detected by CCK-8 assay and flow cytometry, respectively.
RESULTS:
DOX significantly increased the levels of cleaved caspase-3 and caspase-9, and down-regulated the level of p-MEK in H929 (P<0.05). MEK antagonist U0126 significantly increased the levels of cleaved caspase-3 and caspase-9, and down-regulated the level of p-MEK (P<0.05). After Dox combined with ML-098 treatment of H929 cells, the apoptosis rate of H929 cells was lower than that of DOX alone treatment group(P<0.05). Compared with DOX alone treatment group, the expressions of p-MEK and p-ERK1/2 in DOX+ML-098 combined treatment group were increased, and the levels of cleaved caspase-3,9 in H929 cells were decreased (P<0.05). The levels of c-Jun mRNA and protein increased in H929 when treated by DOX alone (P<0.05).
CONCLUSION
DOX can induce apoptosis of H929 via intrinsic apoptosis pathway, and MEK/ERK pathway and c-Jun possibly play a role in this process.
Apoptosis
;
Caspase 3
;
Caspase 9/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Doxycycline/pharmacology*
;
Humans
;
Mitogen-Activated Protein Kinase Kinases/pharmacology*
;
Multiple Myeloma
7.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
Carthamus tinctorius/chemistry*
;
Chalcone/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Cytokines/metabolism*
;
Flavonoids/therapeutic use*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Humans
;
Ischemic Stroke/drug therapy*
;
Janus Kinase 2/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prostaglandin D2
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quinones/pharmacology*
8.Mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination in treatment of bronchial asthma based on network pharmacology and experimental verification.
Bei-Bei ZHANG ; Meng-Nan ZENG ; Qin-Qin ZHANG ; Ru WANG ; Ju-Fang JIA ; Peng-Li GUO ; Meng LIU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2022;47(18):4996-5007
This study aims to investigate mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination(MT) in the treatment of bronchial asthma based on network pharmacology and in vivo experiment, which is expected to lay a theoretical basis for clinical application of the combination. First, the potential targets of MT in the treatment of bronchial asthma were predicted based on network pharmacology, and the "Chinese medicine-active component-target-pathway-disease" network was constructed, followed by Gene Oncology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the potential targets. Molecular docking was used to determine the binding activity of key candidate active components to hub genes. Ovalbumin(OVA, intraperitoneal injection for sensitization and nebulization for excitation) was used to induce bronchial asthma in rats. Rats were classified into control group(CON), model group(M), dexamethasone group(DEX, 0.075 mg·kg~(-1)), and MT(1∶1.5) group. Hematoxylin and eosin(HE), Masson, and periodic acid-Schiff(PAS) staining were performed to observe the effect of MT on pathological changes of lungs and trachea and goblet cell proliferation in asthma rats. The levels of transforming growth factor(TGF)-β1, interleukin(IL)6, and IL10 in rat serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein levels of mitogen-activated protein kinase 8(MAPK8), cyclin D1(CCND1), IL6, epidermal growth factor receptor(EGFR), phosphatidylinositol 3-kinase(PI3 K), and protein kinase B(Akt) by qRT-PCR and Western blot. Network pharmacology predicted that MAPK8, CCND1, IL6, and EGFR were the potential targets of MT in the treatment of asthma, which may be related to PI3 K/Akt signaling pathway. Quercetin and β-sitosterol in MT acted on a lot of targets related to asthma, and molecular docking results showed that quercetin and β-sitosterol had strong binding activity to MAPK, PI3 K, and Akt. In vivo experiment showed that MT could effectively alleviate the symptoms of OVA-induced asthma rats, improve the pathological changes of lung tissue, reduce the production of goblet cells, inhibit the inflammatory response of asthma rats, suppress the expression of MAPK8, CCND1, IL6, and EGFR, and regulate the PI3 K/Akt signaling pathway. Therefore, MT may relieve the symptoms and inhibit inflammation of asthma rats by regulating the PI3 K/Akt signaling pathway, and quercetin and β-sitosterol are the candidate active components.
Animals
;
Asthma/drug therapy*
;
Cyclin D1
;
Dexamethasone/adverse effects*
;
Drug Combinations
;
Drugs, Chinese Herbal/therapeutic use*
;
Eosine Yellowish-(YS)/adverse effects*
;
Ephedra
;
ErbB Receptors
;
Hematoxylin/therapeutic use*
;
Interleukin-10
;
Interleukin-6
;
Mitogen-Activated Protein Kinase 8/therapeutic use*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Ovalbumin/adverse effects*
;
Periodic Acid/adverse effects*
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quercetin
;
RNA, Messenger
;
Rats
9.Antidepressant effect and molecular mechanism of notoginsenoside R_1 based on network pharmacology and animal experiments.
Ye LI ; Yan-Yan ZHANG ; Di WU ; Ke-Ming QI ; Wei LU ; Yi-Cong WEI
China Journal of Chinese Materia Medica 2022;47(20):5599-5609
To provide experimental basis and theoretical guidance for further research on the molecular mechanism of notoginsenoside R_1(NGR_1) in the treatment of depression, the present study analyzed the potential mechanism of NGR_1 in the treatment of depression through network pharmacology and verified it by molecular docking and animal experiments. PharmMapper, SwissTargetPrediction, and GeneCards were used to predict the related targets of both NGR_1 and depression to obtain the potential targets of NGR_1 in the treatment of depression. The database for annotation, visualization and integrated discovery(DAVID) was used for GO functional annotation and KEGG pathway enrichment analysis to screen the possible mechanisms of NGR_1 exerting antidepressant effect. Cytoscape 3.9.0 was adopted to construct a protein-protein interaction(PPI) network, and the topological analysis was performed to obtain the core targets. The binding activity of NGR_1 to core targets was tested by molecular docking. The depression model was prepared by injecting lipopolysaccharide(LPS) into the lateral ventricle in mice, and intervened with NGR_1. The antidepressant effect of NGR_1 was detected by behavioral tests and RT-qPCR. The results showed that by network pharmacology, 56 common targets of NGR_1 and depression were predicted, and GO enrichment analysis determined 13 related biological processes, mainly involving G protein-coupled receptor signaling pathway, positive regulation of transcription from RNA polymerase Ⅱ promoter, cytokine-mediated signaling pathway, gene expression, apoptosis, cell proliferation, and signal transduction. In addition, KEGG pathway enrichment analysis identified ten potential pathways, including neuroactive ligand-receptor interaction signaling pathway, lipid and atherosclerosis signaling pathway, cAMP signaling pathway, PI3 K-AKT signaling pathway, and lipid and atherosclerosis signaling pathway. PPI analysis revealed that the core targets included CASP3, VEGFA, IGF1, STAT3, MAPK1, PPARG, MTOR, MAPK14, NR3 C1 and AR, and molecular docking demonstrated that NGR_1 had desirable binding activity to these target proteins. In animal experiments, the results showed that NGR_1 improved the disease behavior of depressed mice, significantly inhibited the neuroinflammatory response(reducing the mRNA expression of Iba-1, TNF-α, IL-1β, and IL-6), and regulated the mRNA expression of lipid and atherosclerosis signaling pathway-related targets(CASP3, STAT3, MAPK1 and MAPK14). This indicated that the antidepressant mechanism of NGR_1 may be related to the regulation of lipid and atherosclerosis signaling pathway. In conclusion, network pharmacology was used to reveal the core targets and pathways of NGR_1, and some of them were verified in animal experiments, which provided the basis for in-depth exploration on the mechanism of NGR_1 in the treatment of depression.
Mice
;
Animals
;
Caspase 3
;
Animal Experimentation
;
Mitogen-Activated Protein Kinase 14
;
Network Pharmacology
;
Molecular Docking Simulation
;
Antidepressive Agents/pharmacology*
;
Lipopolysaccharides
;
Atherosclerosis
;
RNA, Messenger
;
Drugs, Chinese Herbal/pharmacology*
10.Rumex acetosella Inhibits Platelet Function via Impaired MAPK and Phosphoinositide 3-Kinase Signaling.
Bo-Ra JEON ; Muhammad IRFAN ; Seung Eun LEE ; Jeong Hoon LEE ; Man Hee RHEE
Chinese journal of integrative medicine 2022;28(9):802-808
OBJECTIVE:
To examine the antiplatelet and antithrombotic activity of Rumex acetosella extract.
METHODS:
Standard light aggregometry was used for platelet aggregation, intracellular calcium mobilization assessed using Fura-2/AM, granule secretion (ATP release) by luminometer, and fibrinogen binding to integrin αIIbβ3 detected using flow cytometry. Western blotting is carried out to determine the phosphorylation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling.
RESULTS:
Rumex acetosella displayed the ability to inhibit platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αIIbβ3. Rumex acetosella has also down-regulated MAPK and PI3K/Akt phosphorylation (all P<0.01).
CONCLUSION
Rumex acetosella extract exhibits antiplatelet activity via modulating GPVI signaling, and it may protect against the development of platelet-related cardiovascular diseases.
Blood Platelets/metabolism*
;
Calcium/metabolism*
;
Fibrinogen/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Phosphorylation
;
Plant Extracts/pharmacology*
;
Platelet Aggregation
;
Platelet Aggregation Inhibitors/pharmacology*
;
Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rumex/metabolism*

Result Analysis
Print
Save
E-mail