1.Overexpression of miR-431-5p impairs mitochondrial function and induces apoptosis in gastric cancer cells via the Bax/Bcl-2/caspase3 pathway.
Jiaming WU ; Zhongquan DENG ; Yi ZHU ; Guangjian DOU ; Jin LI ; Liyong HUANG
Journal of Southern Medical University 2023;43(4):537-543
OBJECTIVE:
To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.
METHODS:
The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.
RESULTS:
The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.
CONCLUSION
The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.
Humans
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein
;
Caspase 3
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
MicroRNAs/metabolism*
;
Mitochondria/metabolism*
;
Mitochondrial Permeability Transition Pore
;
Reactive Oxygen Species
;
Stomach Neoplasms/pathology*
2.REEP1 Preserves Motor Function in SOD1G93A Mice by Improving Mitochondrial Function via Interaction with NDUFA4.
Siyue QIN ; Pan YOU ; Hui YU ; Bo SU
Neuroscience Bulletin 2023;39(6):929-946
A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.
Mice
;
Animals
;
Amyotrophic Lateral Sclerosis/metabolism*
;
Superoxide Dismutase-1/metabolism*
;
Superoxide Dismutase/metabolism*
;
Mice, Transgenic
;
Spinal Cord/pathology*
;
Mitochondria/physiology*
;
Disease Models, Animal
3.Research of progress of mitochondria in the pathogenesis of sepsis.
Liwei YU ; Zhiling ZHAO ; Gaiqi YAO
Chinese Critical Care Medicine 2023;35(6):669-672
Sepsis is an organ dysfunction caused by dysregulation of the body's response to infection, with high morbidity and mortality. The pathogenesis of sepsis is still unclear, and there are no specific treatment drugs. As a cell energy supply unit, the dynamic changes of mitochondria are closely related to various diseases. Studies have shown that structure and function of mitochondria are changed in different organs during sepsis. The energy shortage, oxidative stress change, imbalance of fusion and fission, autophagy reduce, biological functions of mitochondria play important roles in sepsis progress, which can provide a research target for the treatment of sepsis.
Humans
;
Mitochondria/pathology*
;
Sepsis/drug therapy*
;
Oxidative Stress
;
Autophagy
4.A Systematic Review of the Role of Mitochondria in Cleft Pathology: A Forgotten General?
Rabiatul Adawiyah Mohamad Noor ; Wan Azman Wan Sulaiman ; Anani Aila Mat Zin ; Nurul Syazana Mohamad Shah
Archives of Orofacial Sciences 2022;17(1):21-30
ABSTRACT
Orofacial clefts (OFC) are one of the most common birth defects that affects the lip, palate, or lip
and palate of an infant. The deterioration of clefts is multifactorial involving multiple genes, various
interactions from environmental factor and most forgotten, mitochondrial abnormality. The aim of this
review is to highlight the importance of mitochondrial activity related to non-syndromic OFC deformity.
Despite its important role in cells, the study on mitochondrial activity in cleft pathology was scarce and
almost forgotten compared to other genetic investigations. This systematic review was completed based
on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. The
literature search was done via the following databases: Google Scholar, Pubmed and Scopus with a total
of nine studies of mitochondrial abnormalities were included. We hypothesise that mitochondria play an
important role in early craniofacial development. A decreased in its function or activity may result in cleft
lip formation. Hence, we would like to shed light on the remarkable role of mitochondria activity in the
pathogenesis of non-syndromic OFC.
Mitochondria--pathology
;
DNA, Mitochondrial
;
Cleft Lip
;
Cleft Palate
5.Research advances in prevention and treatment of cerebral ischemia-reperfusion injury by targeting mitochondrial quality control.
Xuan WEI ; Ji-Yong LIU ; Wen-Li ZHANG ; Zhi-Gang MEI
China Journal of Chinese Materia Medica 2022;47(16):4305-4313
Cerebral ischemia-reperfusion injury(CIRI) is an important factor hindering the recovery of ischemic stroke patients after blood flow recanalization. Mitochondria, serving as the "energy chamber" of cells, have multiple important physiological functions, such as supplying energy, metabolizing reactive oxygen species, storing calcium, and mediating programmed cell death. During CIRI, oxidative stress, calcium overload, inflammatory response, and other factors can easily lead to neuronal mitochondrial dyshomeostasis, which is the key pathological link leading to secondary injury. As reported, the mitochondrial quality control(MQC) system, mainly including mitochondrial biosynthesis, kinetics, autophagy, and derived vesicles, is an important endogenous mechanism to maintain mitochondrial homeostasis and plays an important protective role in the damage of mitochondrial structure and function caused by CIRI. This paper reviewed the mechanism of MQC and the research progress on MQC-targeting therapy of CIRI in recent 10 years to provide theoretical references for exploring new strategies for the prevention and treatment of ischemic stroke with traditional Chinese medicine.
Brain Ischemia/prevention & control*
;
Calcium/metabolism*
;
Humans
;
Ischemic Stroke
;
Mitochondria/pathology*
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/prevention & control*
6.Prevention and treatment of non-alcoholic fatty liver disease by regulation of mitochondrial function with Chinese medicine.
Qiong MA ; An-Hua SHI ; Xi ZHAO ; Wen-Ling CHEN
China Journal of Chinese Materia Medica 2022;47(19):5113-5120
Non-alcoholic fatty liver disease(NAFLD), as a metabolic stress liver injury disease, is one of the most common chronic liver diseases, which seriously threatens people's health. The pathogenesis of NAFLD is very complex. A large number of studies show that the hepatic mitochondrial dysfunction leads to the disorder of hepatic glucose and lipid metabolism, oxidative stress, and inflammation, thus inducing hepatocyte apoptosis, which plays an important role in the progression of NAFLD. In recent years, researchers have begun to focus on developing drugs that slowed the progression of NAFLD by regulating the hepatic mitochondrial function. Chinese medicine has a good curative effect on the treatment of NAFLD, with the advantages of high safety and few side effects. Various studies have shown that Chinese medicine prevented and treated NAFLD by regulating the mitochondrial function. Therefore, this paper summarized the relationship between NAFLD and mitochondria, and the mechanism of Chinese medicine(single Chinese medicine, Chinese medicine monomer, and Chinese medicine compound prescription) in the prevention and treatment of NAFLD by regulating mitochondrial function. This paper is expected to provide references for clinical application of traditional Chinese medicine in the treatment of NAFLD by regulating mitochondrial function.
Humans
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Medicine, Chinese Traditional/adverse effects*
;
Liver
;
Mitochondria/pathology*
;
Lipid Metabolism
7.Mitochondrial Damage due to Hypoxia and Its Forensic Significance.
Yi Kai HU ; Heng ZHANG ; Bi XIAO ; Long CHEN
Journal of Forensic Medicine 2020;36(2):243-248
Mitochondria are the special organelle in eukaryotic cells. Their main functions are to synthesize energy required for cell activity by oxidative phosphorylation. Most of the oxygen absorbed by the body is consumed in the mitochondria. The precise diagnosis of mechanical asphyxia is one of the difficulties in forensic pathology practice. Forensic pathologists have been trying to find a reliable and sensitive marker for the diagnosis of mechanical asphyxia. Mitochondria are very sensitive to hypoxic environments, and the markers of mitochondrion damage can be used as a basis for the diagnosis of mechanical asphyxia. The purpose of this paper is to review the research progress on mitochondrial damage in hypoxic environments and to explore the possibility of using markers of mitochondrion damage in forensic pathological practice.
Asphyxia
;
Forensic Pathology
;
Humans
;
Hypoxia
;
Mitochondria
;
Oxygen
8.Effects of Mitochondrial Dysfunction via AMPK/PGC-1 α Signal Pathway on Pathogenic Mechanism of Diabetic Peripheral Neuropathy and the Protective Effects of Chinese Medicine.
Chinese journal of integrative medicine 2019;25(5):386-394
Diabetic peripheral neuropathy (DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor- γ coactivator 1 α (PGC-1 α) axis plays a key role in regulating mitochondrial energy metabolism. Increasing preclinical evidences have shown that inhibition of AMPK/PGC-1 α pathway leading to mitochondrial dysfunction in neurons or Schwann cells contributes to neuron apoptosis, distal axonopathy and nerve demyelination in DPN. Some Chinese medicine formulae or extracts from herbs may have potential neuroprotective effects on DPN via activating AMPK/PGC-1 α pathway and improving mitochondrial function.
AMP-Activated Protein Kinases
;
metabolism
;
Diabetic Neuropathies
;
drug therapy
;
pathology
;
Humans
;
Medicine, Chinese Traditional
;
Mitochondria
;
metabolism
;
pathology
;
Neuroprotective Agents
;
therapeutic use
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
metabolism
;
Signal Transduction
9.Evaluation and Interpretation of Transcriptome Data Underlying Heterogeneous Chronic Obstructive Pulmonary Disease
Seokjin HAM ; Yeon Mok OH ; Tae Young ROH
Genomics & Informatics 2019;17(1):e2-
Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.
Gene Expression Profiling
;
Humans
;
Lung
;
Lung Diseases
;
Mitochondria
;
Pathology
;
Population Characteristics
;
Pulmonary Disease, Chronic Obstructive
;
Transcriptome
10.The Zuo Jin Wan Formula increases chemosensitivity of human primary gastric cancer cells by AKT mediated mitochondrial translocation of cofilin-1.
Meng-Yao SUN ; Dan-Dan WANG ; Jian SUN ; Xiao-Hua ZHAO ; Si CAI ; Qiu-Xue WU ; Tao JIE ; Zhen-Hua NI ; Jian-Yue SUN ; Qing-Feng TANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):198-208
Resistance to cisplatin (DDP)-based chemotherapy is a major cause of treatment failure in human gastric cancer (GC). It is necessary to identify the drugs to re-sensitize GC cells to DDP. In our previous research, Zuo Jin Wan Formula (ZJW) has been proved could increase the mitochondrial apoptosis via cofilin-1 in a immortalized cell line, SGC-7901/DDP. Due to the immortalized cells may still difficult highly recapitulate the important molecular events in vivo, primary GC cells model derived from clinical patient was constructed in the present study to further evaluate the effect of ZJW and the underlying molecular mechanism. Immunofluorescent staining was used to indentify primary cultured human GC cells. Western blotting was carried out to detect the protein expression. Cell Counting Kit-8 (CCK-8) was used to evaluate cell proliferation. Flow cytometry analysis was performed to assess cell apoptosis. ZJW inhibited proliferation and induced apoptosis in primary DDP-resistant GC cells. Notably, the apoptosis in GC cells was mediated by inducing cofilin-1 mitochondrial translocation, down-regulating Bcl-2 and up-regulating Bax expression. Surprisingly, the level of p-AKT protein was higher in DDP-resistant GC cells than that of the DDP-sensitive GC cells, and the activation of AKT could attenuate ZJW-induced sensitivity to DDP. These data revealed that ZJW can increase the chemosensitivity in DDP-resistant primary GC cells by inducing mitochondrial apoptosis and AKT inactivation. The combining chemotherapy with ZJW may be an effective therapeutic strategy for GC chemoresistance patients.
Adult
;
Aged
;
Aged, 80 and over
;
Apoptosis
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cisplatin
;
pharmacology
;
therapeutic use
;
Cofilin 1
;
metabolism
;
Drug Resistance, Neoplasm
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
Female
;
Humans
;
Male
;
Middle Aged
;
Mitochondria
;
drug effects
;
metabolism
;
pathology
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Stomach Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
Tumor Cells, Cultured


Result Analysis
Print
Save
E-mail