1.Research progress on the application of visual electrophysiological examination in early diagnosis of glaucoma
Chang SUN ; Rong ZHANG ; Xiaolin XIAO ; Minpeng XU ; Dong MING ; Xia HUA
International Eye Science 2025;25(7):1073-1078
Glaucoma is a group of optic nerve disorders characterized by progressive optic nerve atrophy and visual field defects, which can lead to irreversible blindness. Early diagnosis of glaucoma is essential for preventing visual loss. However, due to the absence of obvious early symptoms, the diagnosis of glaucoma remains challenging. Visual electrophysiological examinations, an objective approach for evaluating visual function, have the potential to be used in the early diagnosis of glaucoma. This review integrates the latest publications to introduce visual electrophysiological examination techniques, including electroretinography(ERG)and visual evoked potential(VEP). It also explores the mechanisms underlying these techniques and their application value in the early diagnosis of glaucoma. In addition, this review summarizes the advantages, limitations, and applicable scenarios of different visual electrophysiological techniques. Finally, the review provides an outlook on the development prospects of visual electrophysiological techniques in the early diagnosis of glaucoma. The findings of this review can assist clinicians in selecting appropriate diagnostic methods, promote the innovation and development of early visual electrophysiological diagnostic techniques for glaucoma, and contribute to reducing the risk of blindness caused by glaucoma.
2.Recognition of high-frequency steady-state visual evoked potential for brain-computer interface.
Ruixin LUO ; Xinyi DOU ; Xiaolin XIAO ; Qiaoyi WU ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(4):683-691
Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.
Humans
;
Brain-Computer Interfaces
;
Evoked Potentials, Visual
;
Algorithms
;
Discriminant Analysis
;
Electroencephalography
3.Research progress of brain-computer interface application paradigms based on rapid serial visual presentation.
Jingmin SUN ; Jiayuan MENG ; Jia YOU ; Mingming YANG ; Jing JIANG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(6):1235-1241
Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.
Humans
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Brain/physiology*
;
Artificial Intelligence
;
Photic Stimulation/methods*
4.Advances in brain-computer interface based on high-frequency steady-state visual evoked potential.
Chenguang ZHENG ; Yang LIU ; Xiaolin XIAO ; Xiaoyu ZHOU ; Fangzhou XU ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(1):155-162
Steady-state visual evoked potential (SSVEP) has been widely used in the research of brain-computer interface (BCI) system in recent years. The advantages of SSVEP-BCI system include high classification accuracy, fast information transform rate and strong anti-interference ability. Most of the traditional researches induce SSVEP responses in low and middle frequency bands as control signals. However, SSVEP in this frequency band may cause visual fatigue and even induce epilepsy in subjects. In contrast, high-frequency SSVEP-BCI provides a more comfortable and natural interaction despite its lower amplitude and weaker response. Therefore, it has been widely concerned by researchers in recent years. This paper summarized and analyzed the related research of high-frequency SSVEP-BCI in the past ten years from the aspects of paradigm and algorithm. Finally, the application prospect and development direction of high-frequency SSVEP were discussed and prospected.
Humans
;
Brain-Computer Interfaces
;
Evoked Potentials, Visual
;
Algorithms
5.Research on phase modulation to enhance the feature of high-frequency steady-state asymmetric visual evoked potentials.
Wei ZHAO ; Lichao XU ; Xiaolin XIAO ; Weibo YI ; Yuanfang CHEN ; Kun WANG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(3):409-417
High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.
Humans
;
Evoked Potentials, Visual
;
Brain-Computer Interfaces
;
Healthy Volunteers
;
Signal-To-Noise Ratio
6.A review of researches on decoding algorithms of steady-state visual evoked potentials.
Man YANG ; Tzyy-Ping JUNG ; Jin HAN ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2022;39(2):416-425
Brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) have become one of the major paradigms in BCI research due to their high signal-to-noise ratio and short training time required by users. Fast and accurate decoding of SSVEP features is a crucial step in SSVEP-BCI research. However, the current researches lack a systematic overview of SSVEP decoding algorithms and analyses of the connections and differences between them, so it is difficult for researchers to choose the optimum algorithm under different situations. To address this problem, this paper focuses on the progress of SSVEP decoding algorithms in recent years and divides them into two categories-trained and non-trained-based on whether training data are needed. This paper also explains the fundamental theories and application scopes of decoding algorithms such as canonical correlation analysis (CCA), task-related component analysis (TRCA) and the extended algorithms, concludes the commonly used strategies for processing decoding algorithms, and discusses the challenges and opportunities in this field in the end.
Algorithms
;
Brain-Computer Interfaces
;
Electroencephalography
;
Evoked Potentials, Visual
;
Photic Stimulation
7.Research advances in non-invasive brain-computer interface control strategies.
Hongtao CAO ; Tzyy-Ping JUNG ; Yuanfang CHEN ; Jie MEI ; Ang LI ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2022;39(5):1033-1040
Brain-computer interface (BCI) can establish a direct communications pathway between the human brain and the external devices, which is independent of peripheral nerves and muscles. Compared with invasive BCI, non-invasive BCI has the advantages of low cost, low risk, and ease of operation. In recent years, using non-invasive BCI technology to control devices has gradually evolved into a new type of human-computer interaction manner. Moreover, the control strategy for BCI is an essential component of this manner. First, this study introduced how the brain control techniques were developed and classified. Second, the basic characteristics of direct and shared control strategies were thoroughly explained. And then the benefits and drawbacks of these two strategies were compared and further analyzed. Finally, the development direction and application prospects for non-invasive brain control strategies were suggested.
Humans
;
Electroencephalography
;
Brain-Computer Interfaces
;
Communication Aids for Disabled
;
User-Computer Interface
;
Brain/physiology*
8.Classification algorithms of error-related potentials in brain-computer interface.
Jinsong SUN ; Tzyy-Ping JUNG ; Xiaolin XIAO ; Jiayuan MENG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2021;38(3):463-472
Error self-detection based on error-related potentials (ErrP) is promising to improve the practicability of brain-computer interface systems. But the single trial recognition of ErrP is still a challenge that hinters the development of this technology. To assess the performance of different algorithms on decoding ErrP, this paper test four kinds of linear discriminant analysis algorithms, two kinds of support vector machines, logistic regression, and discriminative canonical pattern matching (DCPM) on two open accessed datasets. All algorithms were evaluated by their classification accuracies and their generalization ability on different sizes of training sets. The study results show that DCPM has the best performance. This study shows a comprehensive comparison of different algorithms on ErrP classification, which could give guidance for the selection of ErrP algorithm.
Algorithms
;
Brain
;
Brain-Computer Interfaces
;
Discriminant Analysis
;
Electroencephalography
;
Support Vector Machine
9.Progress of classification algorithms for motor imagery electroencephalogram signals.
Tuo LIU ; Yangyang YE ; Kun WANG ; Lichao XU ; Weibo YI ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2021;38(5):995-1002
Motor imagery (MI), motion intention of the specific body without actual movements, has attracted wide attention in fields as neuroscience. Classification algorithms for motor imagery electroencephalogram (MI-EEG) signals are able to distinguish different MI tasks based on the physiological information contained by the EEG signals, especially the features extracted from them. In recent years, there have been some new advances in classification algorithms for MI-EEG signals in terms of classifiers versus machine learning strategies. In terms of classifiers, traditional machine learning classifiers have been improved by some researchers, deep learning and Riemannian geometry classifiers have been widely applied as well. In terms of machine learning strategies, ensemble learning, adaptive learning, and transfer learning strategies have been utilized to improve classification accuracies or reach other targets. This paper reviewed the progress of classification algorithms for MI-EEG signals, summarized and evaluated the existing classifiers and machine learning strategies, to provide new ideas for developing classification algorithms with higher performance.
Algorithms
;
Brain-Computer Interfaces
;
Electroencephalography
;
Imagery, Psychotherapy
;
Imagination
;
Machine Learning
10.EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application.
Long CHEN ; Bin GU ; Zhongpeng WANG ; Lei ZHANG ; Minpeng XU ; Shuang LIU ; Feng HE ; Dong MING
Frontiers of Medicine 2021;15(5):740-749
Stroke is one of the most serious diseases that threaten human life and health. It is a major cause of death and disability in the clinic. New strategies for motor rehabilitation after stroke are undergoing exploration. We aimed to develop a novel artificial neural rehabilitation system, which integrates brain-computer interface (BCI) and functional electrical stimulation (FES) technologies, for limb motor function recovery after stroke. We conducted clinical trials (including controlled trials) in 32 patients with chronic stroke. Patients were randomly divided into the BCI-FES group and the neuromuscular electrical stimulation (NMES) group. The changes in outcome measures during intervention were compared between groups, and the trends of ERD values based on EEG were analyzed for BCI-FES group. Results showed that the increase in Fugl Meyer Assessment of the Upper Extremity (FMA-UE) and Kendall Manual Muscle Testing (Kendall MMT) scores of the BCI-FES group was significantly higher than that in the sham group, which indicated the practicality and superiority of the BCI-FES system in clinical practice. The change in the laterality coefficient (LC) values based on μ-ERD (ΔLC
Electric Stimulation
;
Electric Stimulation Therapy
;
Electroencephalography
;
Humans
;
Recovery of Function
;
Stroke/therapy*
;
Stroke Rehabilitation

Result Analysis
Print
Save
E-mail