1.Synthesis, characterization and molecular dynamics simulation of layered double hydroxides intercalated with aspartic acid
Yan SHEN ; Guoxiang PAN ; Bo XU ; Minhong XU
Journal of China Pharmaceutical University 2025;56(3):329-335
Traditional experimental methods are insufficient in the study of layered double hydroxides (LDHs) supramolecular structure and hydration expansion performance, and information on interlayer anionic arrangement and structural water molecules cannot be obtained. Aspartic acid intercalated magnesium aluminum hydrotalcite was synthesized using coprecipitation and ion exchange. The structure of hydrotalcite precursor and its aspartic acid composite materials was characterized by X-ray powder diffraction, differential thermal analysis, and infrared spectroscopy, and Materials Studio software was used to simulate the molecular dynamics of microstructure and hydration properties of LDHs intercalated with the aspartic acid drug. The prepared composite material had a regular layered structure and a single crystal phase. After intercalation with aspartic acid, the interlayer spacing increased from 0.84 nm to 1.13−1.17 nm; after intercalation, the thermal decomposition temperature of aspartic acid increased from 249 °C to 334 °C, greatly improving its thermal stability. The interlayer spacing of the intercalated hydrotalcite obtained from the experiment was close to the molecular dynamics simulation results when Nw=3−4. As more water molecules were inserted between the layers, the greater the interlayer distance became. Hydration energy increased gradually and tended to a certain value. The total number of hydrogen bonds increased gradually, the hydrogen bonds between laminates and anions decreased gradually, but the hydrogen bonds between laminates and water molecules increased gradually. The simulation results are close to the experimental results, which can lay a foundation for the design and synthesis of LDHs-based drug composites.
2.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
3.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
4.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
5.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
6.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
7.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
8.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
9.Construction and Validation of the Prediction Model for the First Cesarean Section Delivery in Multiparas
Xiaopeng XU ; Yawen ZHANG ; Minhong SHEN ; Qin HUANG
Journal of Practical Obstetrics and Gynecology 2024;40(8):657-663
Objective:To establish a predictive model of the first cesarean delivery in multiparous women based on the situation of two consecutive pregnancies.Methods:The data of patients with two consecutive deliv-eries of single live birth and the previous delivery was vaginal delivery in the First Affiliated Hospital of Soochow U-niversity during the second delivery time range from January 1,2018 to December 31,2021 were retrospectively analyzed.According to whether the second pregnancy occurred cesarean section,the patients were divided into two groups(vaginal delivery group and cesarean section group).Univariate,stepwise,and multiple Logistic re-gression analyses were used to screen the influencing factors of multipara's first cesarean section delivery,and the prediction model was established.R language was used to build the model's nomogram and calibration curve.The bootstrap resampling method was used for internal verification.After establishing the model,clinical data of patients with two consecutive births of single live birth between January 1,2022 and April 1,2023 were retrospec-tively collected for external verification of the model.Results:①A total of 2709 patients were included in this study for modeling,of which 6.31%(171/2709)underwent cesarean section for the first time.603 cases were included for external verification.②According to univariate,stepwise and multivariate Logistic regression analysis,all the variables affecting the first delivery by cesarean section were screened out,including:abnormal labor in previous labor,age of current delivery,assisted reproductive technology,hypertension disorder complicating pregnancy,pregnancy with thrombocytopenia,oligohydramnios,excessive amniotic fluid,macrosomia,fetal growth restriction,abnormal fetal position,fetal distress,all of the above variables P<0.05 and incorporated into the final prediction model.③The AUC of this model was 0.949(95%CI 0.928-0.969),and the calibration curve showed that the model intercept was 0 and the slope was 1.Hosmer-Lemeshow test had a P>0.05,indicating that the model had a high accuracy.④The AUC of external validation was 0.958,the slope of the calibration curve was 0.972,and the Hosmer-Lemeshow test had a P of 0.49.Conclusions:The prediction model of the first delivery by cesarean section during the second pregnancy has been established.The prediction efficiency of the model is good,and it can provide a tool for the individualized evaluation of menstrual women in clinical work.
10.Effect of inhaled budesonide on the prevention of bronchopulmonary dysplasia in premature infants and its impact on the development of intelligence at 1 year old
Qian XYU ; Shunxian ZHANG ; Lirong LUO ; Hongli WANG ; Minhong XU ; Shaowei YU
Journal of Public Health and Preventive Medicine 2021;32(2):77-80
Objective To evaluate potential protective effects of inhaled budesonide on bronchopulmonary dysplasia (BPD) in premature infants and its impact on the intelligence development at 1 year of age. Methods A total of 82 preterm infants admitted to the neonatal intensive care center from January 2017 to January 2018 were selected as research subjects. The enrolled subjects were divided into a study group (Budesonide) and a control group (saline) by random number table method, with 41 cases in each group. The incidence of BPD, mortality, hospitalization time, time of withdrawal and oxygenation, and complications were compared between the two groups. The patients were regularly followed up to 1 year old after discharge. The physical growth and Gesell intelligence development of the two groups were compared. Results The incidence of BPD in the study group was significantly lower than that in the control group, and the difference was statistically significant (P<0.05). There was no significant difference in mortality between the two groups. The hospitalization time, weaning and oxygenation time, and 1-week re-intubation rate in the study group were significantly lower than those in the control group (P<0.05). There was no significant difference between the two groups in the incidence of adverse reactions and physical growth at 1 year old and Gesell intelligence evaluation. Conclusion Budesonide aerosol inhalation reduced the incidence of BPD in premature infants, shortened hospitalization and weaning time, and there were no near-term and long-term adverse reactions.


Result Analysis
Print
Save
E-mail