1.Treatment of IgA Nephropathy by Tonifying Kidney and Invigorating Spleen as Well as Detoxifying and Relieving Sore-throat Based on PIgR-CR1-mediated Mucosal-renal Axis
Fan LI ; Hongan WANG ; He NAN ; Mingyu HE ; Chengji CUI ; Yinping WANG ; Yutong LIU ; Shoulin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):237-244
Immunoglobulin A nephropathy (IgAN) is the primary glomerulonephritis with the highest incidence rate in the world. It is also the main cause of end-stage renal disease (ESRD) in China, which has brought heavy economic burden to the society and patient families. Traditional Chinese medicine (TCM) has certain advantages in treating IgAN. In TCM, IgAN is classified into consumptive disease, hematuria, and edema categories, with the location in the kidney and involving the lung, liver, and spleen. Professor Ren Jixue, a master of TCM, believes that kidney deficiency and spleen deficiency are the root causes of IgAN, and the throat is the source of the disease. He proposed the theory of throat-kidney correlation and used the method of tonifying kidney and invigorating spleen as well as detoxifying and relieving sore-throat to treat IgAN, achieving significant therapeutic effects. Studies have shown that IgAN is closely related to mucosal immune defense. IgAN patients often experience recurrent and gradually worsening symptoms due to mucosal infections, and polymeric Ig receptor (PIgR) is an important component of mucosal defense function. The lack of PIgR leads to the accumulation of IgA molecules in the mucosal lamina propria, and the molecules enter the bloodstream in large quantities and ultimately deposit in the kidneys, causing kidney damage. Complement regulatory protein complement receptor type 1 (CR1) exists on red blood cells and glomeruli and has the function of inhibiting the activation and differentiation of B cells, clearing immune complexes, and inhibiting excessive activation of the complement system. Therefore, regulating the immune defense function through the mucosal-renal axis mediated by PIgR-CR1 will be an important target for preventing and treating IgAN. Based on the theory of throat-kidney correlation, this article explores the effects and molecular mechanisms of tonifying kidney and invigorating spleen as well as detoxifying and relieving sore-throat in preventing and treating IgAN by regulating the mucosal-kidney axis mediated by PIgR-CR1. It provides effective theoretical support and a scientific basis for TCM prevention and treatment of IgAN based on the theory of throat-kidney correlation.
2.Treatment of IgA Nephropathy by Tonifying Kidney and Invigorating Spleen as Well as Detoxifying and Relieving Sore-throat Based on PIgR-CR1-mediated Mucosal-renal Axis
Fan LI ; Hongan WANG ; He NAN ; Mingyu HE ; Chengji CUI ; Yinping WANG ; Yutong LIU ; Shoulin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):237-244
Immunoglobulin A nephropathy (IgAN) is the primary glomerulonephritis with the highest incidence rate in the world. It is also the main cause of end-stage renal disease (ESRD) in China, which has brought heavy economic burden to the society and patient families. Traditional Chinese medicine (TCM) has certain advantages in treating IgAN. In TCM, IgAN is classified into consumptive disease, hematuria, and edema categories, with the location in the kidney and involving the lung, liver, and spleen. Professor Ren Jixue, a master of TCM, believes that kidney deficiency and spleen deficiency are the root causes of IgAN, and the throat is the source of the disease. He proposed the theory of throat-kidney correlation and used the method of tonifying kidney and invigorating spleen as well as detoxifying and relieving sore-throat to treat IgAN, achieving significant therapeutic effects. Studies have shown that IgAN is closely related to mucosal immune defense. IgAN patients often experience recurrent and gradually worsening symptoms due to mucosal infections, and polymeric Ig receptor (PIgR) is an important component of mucosal defense function. The lack of PIgR leads to the accumulation of IgA molecules in the mucosal lamina propria, and the molecules enter the bloodstream in large quantities and ultimately deposit in the kidneys, causing kidney damage. Complement regulatory protein complement receptor type 1 (CR1) exists on red blood cells and glomeruli and has the function of inhibiting the activation and differentiation of B cells, clearing immune complexes, and inhibiting excessive activation of the complement system. Therefore, regulating the immune defense function through the mucosal-renal axis mediated by PIgR-CR1 will be an important target for preventing and treating IgAN. Based on the theory of throat-kidney correlation, this article explores the effects and molecular mechanisms of tonifying kidney and invigorating spleen as well as detoxifying and relieving sore-throat in preventing and treating IgAN by regulating the mucosal-kidney axis mediated by PIgR-CR1. It provides effective theoretical support and a scientific basis for TCM prevention and treatment of IgAN based on the theory of throat-kidney correlation.
3.UHPLC Fingerprinting and Spectroscopic Relationship of Antioxidant Activity of the Miao Medicine Ficus Tikoua Bur.
Mingyu YANG ; Mengyu LI ; Zhe HUANG ; Qi HE ; Qingwen SUN ; Ye YANG
Chinese Journal of Modern Applied Pharmacy 2024;41(6):787-796
OBJECTIVE
To establish the UHPLC fingerprint of Miao Medicine Ficus tikoua Bur., study its spectrum-effect relationship with antioxidant activity, and screen the antioxidant active components.
METHODS
UHPLC was used to establish the fingerprint of Ficus tikoua Bur.. Evaluation System for Similarity of Chromatographic Fingerprint of Chinese Herbal Medicine (Version 2012) was used to evaluate the similarity and identify the common peaks. SPSS 16.0 and SIMCA 14.1 software were used for hierarchical cluster analysis(HCA) and principal component analysis(PCA). The 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging method, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt(ABTS) free radical scavenging method and total antioxidant capacity method were used to evaluate the antioxidant activity of 16 batches of ethanol extracts from Ficus tikoua Bur. Three methods including grey relational analysis(GRA), bivariate correlation analysis and partial least squares regression(PLSR) were used to study the spectrum-effect relationship.
RESULTS
The UHPLC fingerprints of 16 batches of Ficus tikoua Bur. were established and 13 common peaks were identified. The similarities were 0.613−0.996. At the same time, it was identified that peak 9 was rutin, peak 10 was isoquercetin, and peak 12 was narcissin. The results of HCA showed that the samples were clustered into two categories, which was consistent with the PCA results. Sixteen batches of Ficus tikoua Bur. had different degrees of antioxidant activity. The results of GRA showed that the correlation between 13 common peaks and antioxidant activity was >0.8, and all of them had high correlation. The results of bivariate correlation analysis and PLSR analysis showed that the correlation coefficient and regression coefficient of peak 5, peak 9(rutin), peak 10(isoquercetin), peak 11 and peak 12(narcissin) were positively correlated with antioxidant activity, and the contribution rate was larger(variable importance in projection>1), which were the main active components of antioxidant activity.
CONCLUSION
All the 16 batches of Ficus tikoua Bur. have good antioxidant activity, and its antioxidant effect is the result of the synergistic action of the internal antioxidant component group. The components corresponding to the common peaks 5, 9, 10, 11, 12 are closely related to their antioxidant activity, revealing the pharmacodynamic material basis of the antioxidant activity of Ficus tikoua Bur.
4.Study on the efficacy of Schroth PSSE combined with 3D printing brace in the treatment of adolescent id-iopathic scoliosis
Mingyu YAO ; He ZHU ; Yizhi DONG ; Xinyue SONG ; Yaxin DU ; Ruixia WU ; Yong ZHU
The Journal of Practical Medicine 2024;40(17):2440-2447
Objective To evaluate the efficacy of Schroth PSSE combined with 3D printing braces in the treatment of adolescent idiopathic scoliosis.Method Forty patients were included and divided into a support group(3D printing support group)and a support+exercise therapy group(3D printing support+Schroth PSSE group).Excluding outliers and lost follow-up data,32 patients were ultimately included,with 16 patients in each group.Wearing time≥18 h for both groups of 3D printing supports.The intervention period of Schroth PSSE is 12 weeks,and exercise is maintained after 12 weeks until the end of follow-up.The longest follow-up time for the brace group was 25 months,with an average follow-up time of(15.00±1.29)months.The longest follow-up time for the brace+exercise therapy group was 24 months,with an average follow-up time of(16.59±1.01)months.Relevant indicators were evaluated after follow-up.Results The support and exercise therapy group showed better improvement in Cobb angle and trunk rotation angle(ATR)than the support group,with statistically significant differences(P<0.05);The distance between the midpoint of the C7 vertebral body and the midline of the sacrum(C7-CSVL)in the support and exercise therapy group showed a statistically significant difference before and after treatment(P<0.05),while there was a significant difference before and after Apical Vertebral Translation(AVT)treatment(P<0.01).There was no statistically significant difference compared to the support group(P<0.05);In terms of SRS-22 score,the brace+exercise therapy group can comprehensively improve the SRS-22 score.Conclusion The combination of Schroth PSSE and 3D printing braces has a better effect on improving Cobb angle and torso rotation angle,improving coronary imbalance,increasing patient satisfaction,and improving quality of life compared to using 3D printing braces alone.
5.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
6.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
7.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
8.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.
9.Differential expression and bioinformatics analysis of microRNAs in exosomes of sheep poxvirus-infected cells
Xiaoqin MA ; Beibei ZHANG ; Hongyu WANG ; Yun GAO ; Lan WANG ; Mingyu HE ; Zhongzheng ZHU ; Xiaoshan CHAO ; Ying WANG ; Juntao DING
Korean Journal of Veterinary Research 2024;64(4):e23-
Sheep pox is widespread worldwide and is the most severe animal pox virus infection. This study aimed to identify the key microRNAs (miRNAs) differentially expressed in the exosomes of sheep poxvirus-infected cells and their target genes and related pathways and provide a theoretical basis for an in-depth understanding of the molecular mechanisms of sheep poxvirus-infected cells. In this study, the differentially expressed miRNAs were verified by quantitative polymerase chain reaction (qPCR), and the target genes of miRNAs were predicted and analyzed by bioinformatics. The qPCR results showed that the expression trends of oar-miR-21, oar-miR-10b, oar-let-7f, oar-let-7b, and oar-miR-221 were consistent with the sequencing results. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that differentially expressed miRNAs were mainly involved in the immune system processes of the Arf6 downstream pathway. The target genes Reactome pathways were mainly enriched in the RAC1 GTPase cycle, CDC42 GTPase cycle, RHO GTPase cycle, RHOV GTPase cycle, and post-transcriptional silencing of small RNAs. The transcription factors SP4, NKX6-1, MEF2A, SP1, EGR1, and POU2F1 that may be connected to sheep pox virus (SPPV)-infected cells were discovered by transcription factor annotation screening. In conclusion, this study screened for differentially expressed miRNAs in SPPV-infected cells and performed a series of bioinformatic analyses of their target genes to provide a theoretical basis for the molecular mechanism of sheep pox virus infections of cells. The data can be used as basic information in future studies on the defense mechanisms against poxvirus infections.


Result Analysis
Print
Save
E-mail