1.Preliminary application of sacral neuromodulation in patients with benign prostatic hyperplasia complicated with underactive bladder after transurethral resection of the prostate
Ning LIU ; Yan ZHANG ; Tao LI ; Qiang HU ; Kai LU ; Lei ZHANG ; Jianping WU ; Shuqiu CHEN ; Bin XU ; Ming CHEN
Journal of Modern Urology 2025;30(1):39-42
[Objective] To evaluate the efficacy and safety of sacral neuromodulation (SNM) in the treatment of patients with benign prostatic hyperplasia (BPH) complicated with underactive bladder (UAB) who respond poorly to transurethral resection of the prostate (TURP). [Methods] A retrospective analysis was performed on 10 patients with BPH and UAB treated with TURP by the same surgeon in Zhongda Hospital Southeast University during Jan.2018 and Jan.2023.The residual urine volume was not significantly relieved after operation, and the maximum urine flow rate and urine volume per discharge were not significantly improved.All patients underwent phase I SNM, and urinary diaries were recorded before and after surgery to observe the average daily frequency of urination, volume per urination, maximum urine flow rate, and residual urine volume. [Results] The operation time was (97.6±11.2) min.During the postoperative test of 2-4 weeks, if the residual urine volume reduction by more than 50% was deemed as effective, SNM was effective in 6 patients (60.0%). Compared with preoperative results, the daily frequency of urination [(20.2±3.8) times vs. (13.2±3.2) times], volume per urination [(119.2±56.7) mL vs. (246.5±59.2) mL], maximum urine flow rate [(8.7±1.5) mL/s vs. (16.5±2.6) mL/s], and residual urine volume [(222.5±55.0) mL vs. (80.8±16.0) mL] were significantly improved, with statistical significance (P<0.05). There were no complications such as bleeding, infection, fever or pain.The 6 patients who had effective outcomes successfully completed phase II surgery, and the fistula was removed.During the follow-up of 1 year, the curative effect was stable, and there were no complications such as electrode displacement, incision infection, or pain in the irritation sites.The residual urine volume of the other 4 unsuccessful patients did not improve significantly, and the electrodes were removed and the vesicostomy tube was retained. [Conclusion] SNM is safe and effective in the treatment of BPH with UAB patients with poor curative effects after TURP.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Visualization Analysis of Artificial Intelligence Literature in Forensic Research
Yi-Ming DONG ; Chun-Mei ZHAO ; Nian-Nian CHEN ; Li LUO ; Zhan-Peng LI ; Li-Kai WANG ; Xiao-Qian LI ; Ting-Gan REN ; Cai-Rong GAO ; Xiang-Jie GUO
Journal of Forensic Medicine 2024;40(1):1-14
Objective To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database,to explore research hotspots and developmen-tal trends.Methods A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the litera-ture measuring tool CiteSpace.The authors,institution,country(region),title,journal,keywords,cited references and other information of relevant literatures were analyzed.Results A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries(regions)were identi-fied,with the number of articles published showing an increasing trend year by year.Among them,the United States had the highest number of publications and China ranked the second.Academy of Forensic Science had the highest number of publications among the institutions.Forensic Science Inter-national,Journal of Forensic Sciences,International Journal of Legal Medicine ranked high in publica-tion and citation frequency.Through the analysis of keywords,it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technol-ogy for sex and age estimation,cause of death analysis,postmortem interval estimation,individual identification and so on.Conclusion It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research.Exploring the combination of advanced ar-tificial intelligence technologies with forensic research will be a hotspot and direction for future re-search.
8.The effect of esketamine on postoperative recovery in children after endoscopic adenoidectomy
Kai-Zheng CHEN ; Ya-Ming XIE ; Qi-Neng XUE ; Xia SHEN
Fudan University Journal of Medical Sciences 2024;51(1):76-80
Objective To observe the effect of esketamine on postoperative recovery in children after endoscopic adenoidectomy.Methods Sixty pediatric patients who underwent adenoidectomy with endoscope from Jan 2022 to Jan 2023 in Eye&ENT Hospital,Fudan University were enrolled.The pediatric patients were randomly divided into hydro-morphine group(n=30)and esketamine group(n=30).Anesthesia induction:lidocaine 1.5 mg/kg,propofol 2.5 mg/kg and remifentanil 4 μg/kg were injected intravenously,and then the endotracheal tube was used for airway management.Anesthesia maintenance:remifentanil infusion was at 0.2-0.5 μg·kg-1·min-1 and the end tidal concentration of sevoflurane was at 0.7-1.0 minimum alveolar concentration(MAC).At the end of surgery,either hydromorphone 0.01 mg/kg or esketamine 0.5 mg/kg were administered for postoperative pain control.Time to resume spontaneous breathing was recorded.Other parameters included respiratory rate per minute,duration of stay in the post-anesthesia care unit,hemodynamic profiles.The adverse events including agitation and desaturation were also of note.Results Children in esketamine group resumed spontaneous breathing faster(P=0.048),had faster respiratory rate when recovery of spontaneous breathing(P=0.001)and lower concentration of end tidal CO2(P=0.005).The findings suggested that esketamine did not impair respiratory function.Compared to hydro-morphine group,children in esketamine group had shorter stay in the post-anesthesia care unit with statistical difference(P=0.020).Esketamine had no effect on heart rate and blood pressure,so there were less adverse events.Conclusion Compared with 0.01 mg/kg hydro-morphine,0.5 mg/kg esketamine does not impair respiratory function and it facilitate fast recovery in children undergoing endoscopic adenoidectomy after general anesthesia.
9.Application of catalytic hairpin self-assembly combining with CRISPR-Cas12a sensing technology in exosomal microRNA-21
Binpan WANG ; Xiaoqi TANG ; Shuang ZHAO ; Ming CHEN ; Kai CHANG
Chinese Journal of Laboratory Medicine 2024;47(2):152-158
Objective:To establish a sensing technology of catalytic hairpin self-assembly (CHA) combining with clustered interspaced short palindromic repeats with associated protein 12a (CRISPR-Cas12a) for the detection of exosomal microRNA-21 (miR-21), and to analyze the performance.Methods:Eight patients diagnosed as breast cancer in the First Affiliated Hospital of the Army Military Medical University from September to October 2023 were selected as the breast cancer group; 8 healthy individuals who underwent physical examinations during the same period were selected as the healthy control group. Plasma exosomes and their miR-21 were extracted using the kit. DNA hairpins and CRISPR RNA sequences were designed for miR-21 sequences. The feasibility of detection technology was validated using polyacrylamide gel electrophoresis and fluorescence spectrophotometer. Hairpins concentration, CHA reaction time, Cas12a protein concentration and Cas12a protein reaction time were further optimized. On this basis, miR-21 was detected at different concentrations (0, 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, 10.0 nmol/L), and fluorescence intensity was collected for unary linear regression analysis to evaluate methodological sensitivity; meanwhile, different types of miRNAs (miR-31, miR-26a, miR-192, miR-25-3p) and blank controls were detected to evaluate methodological specificity. A case-control study was conducted to detect the relative expression level of plasma exosomal miR-21 in breast cancer group and healthy control group using this detection technology and reverse transcription PCR (RT-PCR) to evaluate the detection ability of clinical samples.Results:A detection method for exosomal miR-21 was established using CHA combining with CRISPR-Cas12a. The concentration of miR-21 detected by this method showed a good linear relationship with fluorescence intensity (the linear correlation coefficient 0.966 7), and the linear detection range was 0.1-10.0 nmol/L, and the detection limit was 87.81 pmol/L. The fluorescence intensity of miR-21 was 450.27±23.96 which was higher than that of miR-31, miR-26a, miR-192, miR-25-3p, and the blank group (98.89±7.35, 98.12±2.07, 98.93±2.45, 96.66±2.45, 82.93±3.54, respectively), with statistical significance ( P<0.001). The results of RT-PCR showed that the relative expression levels of plasma exosomal miR-21 in the breast cancer group were higher than that in healthy control group (1.83±0.27 vs 0.93±0.12, P<0.001); CHA combining with CRISPR-Cas12a detection technology showed that the relative expression levels of plasma exosomal miR-21 in breast cancer group were higher than that in healthy control group (1.94±0.21 vs 0.98±0.08, P<0.001); There was no significant difference in the relative expression levels of plasma exosomal miR-21 between CHA combining with CRISPR-Cas12a detection technology and reverse transcription PCR in breast cancer group and healthy control group ( P>0.05). Conclusion:In this study, a highly sensitive and specific sensing technology of CHA combining with CRISPR-Cas12a for exosomal miR-21 was established. The results of detecting plasma exosomal miR-21 were consistent with the results of reverse transcription PCR, which can be used for screening of breast cancer patients.
10.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.

Result Analysis
Print
Save
E-mail