1.Clinical observation of lamellar keratectomy and corneal collagen crosslinking in the treatment of superficial fungal keratitis
Limei LIU ; Xinhong HAN ; Chunxiu MING ; Pengfei ZHANG ; Chao WANG
International Eye Science 2025;25(5):802-807
AIM:To evaluate the clinical efficacy of lamellar keratectomy and corneal collagen crosslinking(LKCCC)in treating superficial fungal keratitis.METHODS: Retrospective analysis. Totally 79 patients(79 eyes)with superficial fungal keratitis who underwent LKCCC in our hospital from January 2014 to October 2023 were included. After admission, routine antifungal drug treatment for 7 d showed no obvious improvement or progressive aggravation. The maximum diameter of corneal lesions in all patients was ≤7 mm, the maximum depth was no more than 50% of the corneal thickness at the location, and the remaining healthy corneal thickness was ≥300 μm. The follow-up time was 90 to 112 d.RESULTS:Among the included 79 eyes, the lesions were located in the central region of the cornea in 6 eyes, in the paracentral region in 61 eyes, and in the peripheral region in 12 eyes. Hypopyon was observed in 5 cases. LKCCC was successfully administered in 79 eyes, cured in 76 eyes(96%), and failed in 3 eyes(4%). The healing time of corneal epithelium in 76 cured eyes was 3-15 d, of which 51 eyes(67%)healed within 7 d and 24 eyes(32%)healed within 3 d. The uncorrected visual acuity(UCVA)and best corrected visual acuity(BCVA)of 76 eyes of cured patients were statistically significant compared with those preoperatively(P<0.0167). Two of the 3 failed eyes were located at the edge of the lesion and recovered after re-keratectomy. One eye was located in the center of the lesion and recovered after being covered by bulbar conjunctival flap. At the last follow-up, no other complications were observed in all patients except superficial cloud and thinning of cornea.CONCLUSION:LKCCC is a rapid and effective treatment for superficial fungal keratitis and can be considered a new treatment option.
2.Analysis of characteristics of adverse drug reactions in a hospital from 2021 to 2023
Yan WANG ; Ming FANG ; Hongwei SONG ; Chao ZHONG ; Feng XU ; Ting ZHOU
Journal of Pharmaceutical Practice and Service 2025;43(4):200-204
Objective To analyze the characteristics of adverse drug reactions (ADR) reported in Sixth People’s Hospital South Campus, Shanghai Jiaotong University from 2021 to 2023, to provide reference for promoting rational clinical drug use. Methods ADR data reported in our hospital were collected retrospectively, including patients’ basic information, drugs causing adverse reactions, types of adverse reactions and outcomes. Descriptive analysis methods were used to summarize and analyze the data. Results A total of 979 cases of ADR were reported in our hospital from 2021 to 2023. The highest proportion of patients with ADR occurred in the age range of 31 to 50, and more male patients (63.5%). The top five drugs involved with adverse reactions were antibiotics (48.8%), Chinese medicine injections(19.2%), vitamins(7.5%), Chinese traditional medicine(7.2%), equine tetanus immunoglobulin(6.3%). Among antibiotics, cefuroxime, ceftazidime and cefotiam were the majority. The organs/systems involved in all ADR were mainly skin and accessories damage (55.4%). The clinical manifestations were rash, itching, and maculopapular rash. Conclusion From 2021 to 2023, the most common drugs causing adverse drug reactions in our hospital were mainly antibacterial drugs, and the rational clinical use of antibacterial drugs still needs to be concerned.
3.Jiebiao Qingli Decoction Regulates TLR7/MAPK/NF-κB Pathway to Prevent and Treat Pneumonia Induced by IAV Infection
Yu MING ; Yichuan MA ; Ruiqi YAO ; Yan CHAO ; Hongchun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):173-181
ObjectiveTo explore the mechanism of Jiebiao Qingli decoction (JQD) in treating pneumonia caused by influenza A virus (IAV) infection. MethodsA total of 132 Balb/c mice were randomly assigned into normal control (NC), model control (IAV), oseltamivir (OSV, 37.5 mg·kg-1), and high-, medium-, low-dose JQD (H-, M-, and L-JQD: 6.05, 3.02, and 1.51 g·kg-1, respectively) groups. The NC group was treated with normal saline nasal drops, and the other groups were intranasally inoculated with A/Brisbane/02/2018 (H1N1) [pdm09-like virus (H1N1)] for the modeling of IAV infection. Two hours post-modeling, the NC and IAV groups were administrated with normal saline by gavage, while other groups received corresponding drugs for 7 d. The body mass, survival status, and deaths of mice were recorded daily during the administration of the drugs. On days 3 and 7, the lung index was measured for mice in each group. Pathological changes in the lung tissue were observed via hematoxylin-eosin staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was conducted to measure the viral load (IAV-M) and the mRNA levels of Toll-like receptor 7 (TLR7), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor-kappa B (NF-κB) in the lung tissue. Western blot was employed to measure the protein levels of p38 MAPK and NF-κB. Enzyme-linked immunosorbent assay was used to quantify serum levels of interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ResultsCompared with the NC group, the IAV group showed reduced survival quality and survival days (P<0.01), lung congestion, inflammatory cell infiltration, elevated lung index (P<0.01), increased viral load (P<0.01), upregulated TLR7, p38 MAPK, and NF-κB levels (P<0.05, P<0.01), decreased IL-2 level (P<0.01), and elevated IL-6 and TNF-α levels (P<0.01). Compared with the IAV group, H-JQD prolonged survival days (P<0.05). All JQD groups alleviated pathological changes in the lung tissue and reduced the lung index (P<0.01). M-JQD and H-JQD decreased the viral load (P<0.01). H-JQD downregulated the mRNA levels of TLR7, p38 MAPK, and NF-κB (P<0.05, P<0.01) and the protein levels of p38 MAPK and NF-κB (P<0.01), increased the serum IL-2 level (P<0.01), and lowered the IL-6 and TNF-α levels (P<0.05, P<0.01). M-JQD downregulated the mRNA level of NF-κB (P<0.01) and the protein level of p38 MAPK (P<0.05), elevated the IL-2 level (P<0.01), and lowered the TNF-α level (P<0.01). ConclusionM- and H-JQD can prevent and control IAV infection-induced pneumonia dose-dependently by inhibiting the TLR7/MAPK/NF-κB signaling pathway, increasing IL-2, and reducing excessive secretion of IL-6 and TNF-α.
4.Jiebiao Qingli Decoction Regulates TLR7/MAPK/NF-κB Pathway to Prevent and Treat Pneumonia Induced by IAV Infection
Yu MING ; Yichuan MA ; Ruiqi YAO ; Yan CHAO ; Hongchun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):173-181
ObjectiveTo explore the mechanism of Jiebiao Qingli decoction (JQD) in treating pneumonia caused by influenza A virus (IAV) infection. MethodsA total of 132 Balb/c mice were randomly assigned into normal control (NC), model control (IAV), oseltamivir (OSV, 37.5 mg·kg-1), and high-, medium-, low-dose JQD (H-, M-, and L-JQD: 6.05, 3.02, and 1.51 g·kg-1, respectively) groups. The NC group was treated with normal saline nasal drops, and the other groups were intranasally inoculated with A/Brisbane/02/2018 (H1N1) [pdm09-like virus (H1N1)] for the modeling of IAV infection. Two hours post-modeling, the NC and IAV groups were administrated with normal saline by gavage, while other groups received corresponding drugs for 7 d. The body mass, survival status, and deaths of mice were recorded daily during the administration of the drugs. On days 3 and 7, the lung index was measured for mice in each group. Pathological changes in the lung tissue were observed via hematoxylin-eosin staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was conducted to measure the viral load (IAV-M) and the mRNA levels of Toll-like receptor 7 (TLR7), p38 mitogen-activated protein kinase (p38 MAPK), and nuclear factor-kappa B (NF-κB) in the lung tissue. Western blot was employed to measure the protein levels of p38 MAPK and NF-κB. Enzyme-linked immunosorbent assay was used to quantify serum levels of interleukin-2 (IL-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ResultsCompared with the NC group, the IAV group showed reduced survival quality and survival days (P<0.01), lung congestion, inflammatory cell infiltration, elevated lung index (P<0.01), increased viral load (P<0.01), upregulated TLR7, p38 MAPK, and NF-κB levels (P<0.05, P<0.01), decreased IL-2 level (P<0.01), and elevated IL-6 and TNF-α levels (P<0.01). Compared with the IAV group, H-JQD prolonged survival days (P<0.05). All JQD groups alleviated pathological changes in the lung tissue and reduced the lung index (P<0.01). M-JQD and H-JQD decreased the viral load (P<0.01). H-JQD downregulated the mRNA levels of TLR7, p38 MAPK, and NF-κB (P<0.05, P<0.01) and the protein levels of p38 MAPK and NF-κB (P<0.01), increased the serum IL-2 level (P<0.01), and lowered the IL-6 and TNF-α levels (P<0.05, P<0.01). M-JQD downregulated the mRNA level of NF-κB (P<0.01) and the protein level of p38 MAPK (P<0.05), elevated the IL-2 level (P<0.01), and lowered the TNF-α level (P<0.01). ConclusionM- and H-JQD can prevent and control IAV infection-induced pneumonia dose-dependently by inhibiting the TLR7/MAPK/NF-κB signaling pathway, increasing IL-2, and reducing excessive secretion of IL-6 and TNF-α.
5.Dahuang Zhechong Pills delay heart aging by reducing cardiomyocyte apoptosis via PI3K/AKT/HIF-1α signaling pathway.
Wen-Jie LIU ; Yue TU ; Wei-Ming HE ; Si-Yi LIU ; Liu-Yun-Xin PAN ; Kai-Zhi WEN ; Cheng-Juan LI ; Chao HAN
China Journal of Chinese Materia Medica 2025;50(5):1276-1285
This study aimed to investigate the effect of Dahuang Zhechong Pills(DHZCP) in delaying heart aging(HA) and explore the potential mechanism. Network pharmacology and molecular docking were employed to explore the targets and potential mechanisms of DHZCP in delaying HA. Furthermore, in vitro experiments were conducted with the DHZCP-containing serum to verify key targets and pathways in D-galactose(D-gal)-induced aging of cardiomyocytes. Active components of DHZCP were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCSMP), and relevant targets were predicted. HA-related targets were screened from the GeneCards, Online Mendelian Inheritance in Man(OMIM), and DisGeNET. The common targets shared by the active components of DHZCP and HA were used to construct a protein-protein interaction network in STRING 12.0, and core targets were screened based on degree in Cytoscape 3.9.1. Metaspace was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of the core targets to predict the mechanisms. Molecular docking was performed in AutoDock Vina. The results indicated that a total of 774 targets of the active components of DHZCP and 4 520 targets related to HA were screened out, including 510 common targets. Core targets included B-cell lymphoma 2(BCL-2), serine/threonine kinase 1(AKT1), and hypoxia-inducible factor 1 subunit A(HIF1A). The GO and KEGG enrichment analyses suggested that DHZCP mainly exerted its effects via the phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway, HIF-1α signaling pathway, longevity signaling pathway, and apoptosis signaling pathway. Among the pathways predicted by GO and KEGG enrichment analyses, the PI3K/AKT/HIF-1α signaling pathway was selected for verification. The cell-counting kit 8(CCK-8) assay showed that D-gal significantly inhibited the proliferation of H9c2 cells, while DHZCP-containing serum increased the viability of H9c2 cells. SA-β-gal staining revealed a significant increase in the number of blue-green positive cells in the D-gal group, which was reduced by DHZCP-containing serum. TUNEL staining showed that DHZCP-containing serum decreased the number of apoptotic cells. After treatment with DHZCP-containing serum, the protein levels of Klotho, BCL-2, p-PI3K/PI3K, p-AKT1/AKT1, and HIF-1α were up-regulated, while those of P21, P16, BCL-2 associated X protein(Bax), and cleaved caspase-3 were down-regulated. The results indicated that DHZCP delayed HA via multiple components, targets, and pathways. Specifically, DHZCP may delay HA by reducing apoptosis via activating the PI3K/AKT/HIF-1α signaling pathway.
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Apoptosis/drug effects*
;
Myocytes, Cardiac/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Animals
;
Rats
;
Humans
;
Molecular Docking Simulation
;
Aging/metabolism*
;
Protein Interaction Maps/drug effects*
;
Heart/drug effects*
;
Network Pharmacology
6.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
7.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
8.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
9.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.
10.Protein C activator derived from snake venom protects human umbilical vein endothelial cells against hypoxia-reoxygenation injury by suppressing ROS via upregulating HIF-1α and BNIP3.
Ming LIAO ; Wenhua ZHONG ; Ran ZHANG ; Juan LIANG ; Wentaorui XU ; Wenjun WAN ; Chao Li Shu WU ; 曙 李
Journal of Southern Medical University 2025;45(3):614-621
OBJECTIVES:
To investigate the antioxidative mechanism of snake venom-derived protein C activator (PCA) in mitigating vascular endothelial cell injury.
METHODS:
Human umbilical vein endothelial cells (HUVECs) were cultured in DMEM containing 1.0 g/L D-glucose and exposed to hypoxia (1% O2) for 6 h followed by reoxygenation for 2 h to establish a cell model of oxygen-glucose deprivation/reoxygenation (OGD/R). The cell model was treated with 2 μg/mL PCA alone or in combination with 2-ME2 (a HIF-1α inhibitor) or DMOG (a HIF-1α stabilizer), and intracellular production of reactive oxygen species (ROS) and protein expression levels of HIF-1α, BNIP3, and Beclin-1 were detected using DCFH-DA fluorescence probe, flow cytometry, and Western blotting. The OGD/R cell model was transfected with a BNIP3-specific siRNA or a scrambled control sequence prior to PCA treatment, and the changes in protein expressions of HIF-1α, BNIP3 and Beclin-1 and intracellular ROS production were examined.
RESULTS:
In the OGD/R cell model, PCA treatment significantly upregulated HIF-1α, BNIP3 and Beclin-1 expressions and reduced ROS production. The effects of PCA were obviously attenuated by co-treatment with 2-ME2 but augmented by treatment with DMOG (a HIF-1α stabilizer). In the cell model with BNIP3 knockdown, PCA treatment increased BNIP3 expression and decreased ROS production without causing significant changes in HIF-1α expression. Compared with HUVECs with PCA treatment only, the cells with BNIP3 knockdown prior to PCA treatment showed significantly lower Beclin-1 expression and higher ROS levels.
CONCLUSIONS
Snake venom PCA alleviates OGD/R-induced endothelial cell injury by upregulating HIF-1α/BNIP3 signaling to suppress ROS generation, suggesting its potential as a therapeutic agent against oxidative stress in vascular pathologies.
Humans
;
Reactive Oxygen Species/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Membrane Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Up-Regulation
;
Cell Hypoxia
;
Cells, Cultured
;
Snake Venoms/chemistry*
;
Beclin-1

Result Analysis
Print
Save
E-mail