1.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
2.A real-world study of first-line albumin-bound paclitaxel in the treatment of advanced pancreatic cancer in China
Juan DU ; Xin QIU ; Jiayao NI ; Qiaoli WANG ; Fan TONG ; Huizi SHA ; Yahui ZHU ; Liang QI ; Wei CAI ; Chao GAO ; Xiaowei WEI ; Minbin CHEN ; Zhuyin QIAN ; Maohuai CAI ; Min TAO ; Cailian WANG ; Guocan ZHENG ; Hua JIANG ; Anwei DAI ; Jun WU ; Minghong ZHAO ; Xiaoqin LI ; Bin LU ; Chunbin WANG ; Baorui LIU
Chinese Journal of Oncology 2024;46(11):1038-1048
Objective:To observe and evaluate the clinical efficacy and safety of albumin-bound paclitaxel as first-line treatment for patients with advanced pancreatic cancer in China, and to explore the prognosis-related molecules in pancreatic cancer based on next-generation sequencing (NGS) of tumor tissues.Methods:From December 2018 to December 2020, patients with locally advanced or metastatic pancreatic cancer were recruited to accept albumin-bound paclitaxel as first-line treatment in the oncology departments of 24 hospitals in East China. The primary endpoints were overall survival (OS) and treatment related adverse events, and the secondary endpoint was progression-free survival (PFS). Adverse effects were graded using Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). NGS sequencing on the primary or metastatic tissue samples of pancreatic cancer obtained through surgical resection or biopsy was performed.Results:This study recruited 229 patients, including 70 patients with locally advanced pancreatic cancer (LAPC) and 159 patients with metastatic pancreatic cancer (mPC). The disease control rate was 79.9% and the objective response rate is 36.3%.The common adverse effects during treatment were anaemia (159 cases), leucopenia (170 cases), neutropenia (169 cases), increased aminotransferases (110 cases), and thrombocytopenia (95 cases), and the incidence of grade 3-4 neutropenia is 12.2% (28/229). The median follow-up time was 21.2 months (95% CI: 18.5-23.1 months). The median PFS (mPFS) was 5.3 months (95% CI: 4.37-4.07 months) and the median OS (mOS) was 11.2 months (95% CI: 9.5-12.9 months). The mPFS of patients with LAPC was 7.4 months (95% CI: 6.6-11.2 months), and their mOS was 15.5 months (95% CI: 12.6-NA months). The mPFS of patients with mPC was 3.9 months (95% CI: 3.4-5.1 months), and their mOS was 9.3 months (95% CI: 8.0-10.8 months). Multivariate Cox regression analysis showed that clinical stage ( HR=1.47, 95% CI: 1.06-2.04), primary tumor site ( HR=0.64, 95% CI: 0.48-0.86), Eastern Cooperative Oncology Group Performance Status (ECOG PS) score ( HR=2.66, 95% CI: 1.53-4.65), and whether to combine radiotherapy ( HR=0.65, 95% CI: 0.42-1.00) were independent influencing factors for the PFS of these patients. The primary tumor site ( HR=0.68, 95% CI: 0.48-0.95), ECOG score ( HR=5.82, 95% CI: 3.14-10.82), and whether to combine radiotherapy ( HR=0.58, 95% CI: 0.35-0.96) were independent influencing factors of the OS of these patients. The most frequent gene mutations in these advanced stage pancreatic patients were KRAS (89.66%), TP53 (77.01%), CDKN2A (32.18%), and SMAD4 (21.84%) by NGS of tumor tissues from 87 pancreatic cancer patients with sufficient specimens. Further analysis revealed that mutations in CDKN2B, PTEN, FGF6, and RBBP8 genes were significantly associated with an increased risk of death ( P<0.05). Conclusion:Albumin-bound paclitaxel as first-line treatment demonstrated feasible anti-tumor efficacy and manageable safety for patients with advanced pancreatic cancer in China.
3.Digital-intelligent Pharmacy:New Quality Productive Forces of Hospital Pharmacy
Jianling ZHENG ; Yanchao YIN ; Ying TANG ; Min GUO ; Dong LIU ; Juan LI
Herald of Medicine 2024;43(9):1502-1508
To define the concept of digital-intelligent pharmacy from three aspects:digital technology,digital intelligence,and data intelligence.By sorting out the development process of hospital pharmacy from informatization to digitalization and then to intelligence in recent years,and combining with the practical experience of Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology in the field of digital pharmacy,this paper discussed the meaning of digital pharmacy and provided new ideas and new assistance for the transformation of hospital pharmacy.Digital pharmacy refers to pharmacists with digital intelligence,who apply digital technology to hospital pharmacy scenarios,combining their own pharmaceutical knowledge,to obtain and produce data intelligence,and realize the digital transformation of hospital pharmacy.Digital pharmacy has become an emerging interdisciplinary subject in hospital pharmacy,which can promote the high-quality development of hospital pharmacy in the future and is a new productive force in hospital pharmacy.
4.Antimicrobial resistance of bacteria from blood specimens:surveillance re-port from Hunan Province Antimicrobial Resistance Surveillance System,2012-2021
Hong-Xia YUAN ; Jing JIANG ; Li-Hua CHEN ; Chen-Chao FU ; Chen LI ; Yan-Ming LI ; Xing-Wang NING ; Jun LIU ; Guo-Min SHI ; Man-Juan TANG ; Jing-Min WU ; Huai-De YANG ; Ming ZHENG ; Jie-Ying ZHOU ; Nan REN ; An-Hua WU ; Xun HUANG
Chinese Journal of Infection Control 2024;23(8):921-931
Objective To understand the change in distribution and antimicrobial resistance of bacteria isolated from blood specimens of Hunan Province,and provide for the initial diagnosis and treatment of clinical bloodstream infection(BSI).Methods Data reported from member units of Hunan Province Antimicrobial Resistance Survei-llance System from 2012 to 2021 were collected.Bacterial antimicrobial resistance surveillance method was imple-mented according to the technical scheme of China Antimicrobial Resistance Surveillance System(CARSS).Bacteria from blood specimens and bacterial antimicrobial susceptibility testing results were analyzed by WHONET 5.6 soft-ware and SPSS 27.0 software.Results A total of 207 054 bacterial strains were isolated from blood specimens from member units in Hunan Province Antimicrobial Resistance Surveillance System from 2012 to 2021,including 107 135(51.7%)Gram-positive bacteria and 99 919(48.3%)Gram-negative bacteria.There was no change in the top 6 pathogenic bacteria from 2012 to 2021,with Escherichia coli(n=51 537,24.9%)ranking first,followed by Staphylococcus epidermidis(n=29 115,14.1%),Staphylococcus aureus(n=17 402,8.4%),Klebsiella pneu-moniae(17 325,8.4%),Pseudomonas aeruginosa(n=4 010,1.9%)and Acinetobacter baumannii(n=3 598,1.7%).The detection rate of methicillin-resistant Staphylococcus aureus(MRSA)decreased from 30.3%in 2015 to 20.7%in 2021,while the detection rate of methicillin-resistant coagulase-negative Staphylococcus(MRCNS)showed an upward trend year by year(57.9%-66.8%).No Staphylococcus was found to be resistant to vancomy-cin,linezolid,and teicoplanin.Among Gram-negative bacteria,constituent ratios of Escherichia coli and Klebsiella pneumoniae were 43.9%-53.9%and 14.2%-19.5%,respectively,both showing an upward trend(both P<0.001).Constituent ratios of Pseudomonas aeruginosa and Acinetobacter baumannii were 3.6%-5.1%and 3.0%-4.5%,respectively,both showing a downward trend year by year(both P<0.001).From 2012 to 2021,resistance rates of Escherichia coli to imipenem and ertapenem were 1.0%-2.0%and 0.6%-1.1%,respectively;presenting a downward trend(P<0.001).The resistant rates of Klebsiella pneumoniae to meropenem and ertapenem were 7.4%-13.7%and 4.8%-6.4%,respectively,presenting a downward trend(both P<0.001).The resistance rates of Pseudomonas aeruginosa and Acinetobacter baumannii to carbapenem antibiotics were 7.1%-15.6%and 34.7%-45.7%,respectively.The trend of resistance to carbapenem antibiotics was relatively stable,but has de-creased compared with 2012-2016.The resistance rates of Escherichia coli to the third-generation cephalosporins from 2012 to 2021 were 41.0%-65.4%,showing a downward trend year by year.Conclusion The constituent ra-tio of Gram-negative bacillus from blood specimens in Hunan Province has been increasing year by year,while the detection rate of carbapenem-resistant Gram-negative bacillus remained relatively stable in the past 5 years,and the detection rate of coagulase-negative Staphylococcus has shown a downward trend.
5.Antimicrobial resistance of bacteria from cerebrospinal fluid specimens:surveillance report from Hunan Province Antimicrobial Resistance Survei-llance System,2012-2021
Jun LIU ; Li-Hua CHEN ; Chen-Chao FU ; Chen LI ; Yan-Ming LI ; Xing-Wang NING ; Guo-Min SHI ; Jing-Min WU ; Huai-De YANG ; Hong-Xia YUAN ; Ming ZHENG ; Nan REN ; An-Hua WU ; Xun HUANG ; Man-Juan TANG
Chinese Journal of Infection Control 2024;23(8):932-941
Objective To investigate changes in the distribution and antimicrobial resistance of bacteria isolated from cerebrospinal fluid(CSF)specimens in Hunan Province,and provide reference for correct clinical diagnosis and rational antimicrobial use.Methods Data reported by member units of Hunan Province Antimicrobial Resistance Surveillance System from 2012 to 2021 were collected according to China Antimicrobial Resistance Surveillance Sys-tem(CARSS)technical scheme.Data of bacteria isolated from CSF specimens and antimicrobial susceptibility tes-ting results were analyzed with WHONET 5.6 and SPSS 20.0 software.Results A total of 11 837 bacterial strains were isolated from CSF specimens from member units of Hunan Province Antimicrobial Resistance Surveillance Sys-tem from 2012 to 2021.The top 5 strains were coagulase-negative Staphylococcus(n=6 397,54.0%),Acineto-bacter baumannii(n=764,6.5%),Staphylococcus aureus(n=606,5.1%),Enterococcus faecium(n=465,3.9%),and Escherichia coli(n=447,3.8%).The detection rates of methicillin-resistant coagulase-negative Staphyloco-ccus(MRCNS)and methicillin-resistant Staphylococcus aureus(MRSA)were 58.9%-66.3%and 34.4%-62.1%,respectively.No Staphylococcus spp.were found to be resistant to vancomycin,linezolid,and teicoplanin.The de-tection rate of Enterococcus faecium was higher than that of Enterococcus faecalis,and the resistance rates of En-terococcus f aecium to penicillin,ampicillin,high concentration streptomycin and levofloxacin were all higher than those of Enterococcus faecalis(all P=0.001).Resistance rate of Streptococcus pneumoniae to penicillin was 85.0%,at a high level.Resistance rate of Escherichia coli to ceftriaxone was>60%,while resistance rates to enzyme inhibitors and carbapenem antibiotics were low.Resistance rate of Klebsiella pneumoniae to ceftriaxone was>60%,to en-zyme inhibitors piperacillin/tazobactam and cefoperazone/sulbactam was>30%,to carbapenem imipenem and me-ropenem was about 30%.Resistance rates of Acinetobacter baumannii to most tested antimicrobial agents were>60%,to imipenem and meropenem were 59.0%-79.4%,to polymyxin B was low.Conclusion Among the bac-teria isolated from CSF specimens,coagulase-negative Staphylococcus accounts for the largest proportion,and the overall resistance of pathogenic bacteria is relatively serious.Bacterial antimicrobial resistance surveillance is very important for the effective treatment of central nerve system infection.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.
9.Prediction and analysis of Q-markers of Elephantopus scaber based on its UPLC fingerprint, content determination of components, and in vitro a nti-tumor activity.
Can-Chao JIA ; Ling-Jie LI ; Zhi-Hao ZENG ; Rui-Yin TANG ; De-Zheng JIA ; Min-Juan YANG ; Jin-Yan QIU ; Dong-Mei LI ; Can-Hui XIE ; Guang-Ying WU ; Yang-Xue LI ; Jie-Yi JIANG ; Hong HUANG ; Guan-Lin XIAO ; Da-Ke CAI ; Xiao-Li BI
China Journal of Chinese Materia Medica 2023;48(16):4421-4428
This study aimed to provide scientific evidence for predicting quality markers(Q-markers) of Elephantopus scaber by establishing UPLC fingerprint of E. scaber from different geographical origins and determining the content of 13 major components, as well as conducting in vitro anti-cancer activity investigation of the main components. The chromatographic column used was Waters CORTECS UPLC C_(18)(2.1 mm×150 mm, 1.6 μm), and the mobile phase consisted of acetonitrile and 0.1% formic acid solution(gradient elution). The column temperature was set at 30 ℃, and the flow rate was 0.2 mL·min~(-1). The injection volume was 1 μL, and the detection wavelength was 240 nm. The UPLC fingerprint of E. scaber was fitted using the Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(2012 edition) to determine common peaks, evaluate similarity, identify and determine the content of major components. The CCK-8 assay was used to explore the inhibitory effect of the main components on the proliferation of lung cancer cells. The results showed that in the established UPLC fingerprint of E. scaber, 35 common peaks were identified. Thirteen major components, including neochlorogenic acid(peak 1), chlorogenic acid(peak 2), cryptochlorogenic acid(peak 3), caffeic acid(peak 4), schaftoside(peak 6), galuteolin(peak 9), isochlorogenic acid B(peak 10), isochlorogenic acid A(peak 12), isochlorogenic acid C(peak 18), deoxyelephantopin(peak 28), isodeoxyelephantopin(peak 29), isoscabertopin(peak 31), and scabertopin(peak 32) were identified and quantified, and a quantitative analysis method was established. The results of the in vitro anti-cancer activity study showed that deoxyelephantopin, isodeoxyelephantopin, isoscabertopin, and scabertopin in E. scaber exhibited inhibition rates of lung cancer cell proliferation exceeding 80% at a concentration of 10 μmol·L~(-1), higher than the positive drug paclitaxel. These results indicate that the fingerprint of E. scaber is highly characteristic, and the quantitative analysis method is accurate and stable, providing references for the research on quality standards of E. scaber. Four sesquiterpene lactones in E. scaber show significant anti-cancer activity and can serve as Q-markers for E. scaber.
Humans
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Asteraceae/chemistry*
;
Lung Neoplasms/drug therapy*
10.A multi-center, double-blind, randomized, placebo- and positive-controlled phase II clinical study of benvitimod for the treatment of atopic dermatitis.
Lin CAI ; Yan ZHAO ; Min ZHENG ; Furen ZHANG ; Qing SUN ; Quanzhong LIU ; Jin HU ; Juan SHEN ; Jianzhong ZHANG
Chinese Medical Journal 2023;136(2):251-252

Result Analysis
Print
Save
E-mail