1.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
2.Pharmaceutical care for a patient with empagliflozin-induced euglycemic diabetic ketoacidosis
Lili YANG ; Qi LI ; Hui WANG ; Ruilong GAO ; Min MAO
China Pharmacy 2025;36(2):214-218
OBJECTIVE To provide a reference for the pharmaceutical care of a patient with type 2 diabetes mellitus (T2DM) and limb-girdle muscular dystrophy (LGMD) who developed euglycemic diabetic ketoacidosis (euDKA) after taking empagliflozin. METHODS Clinical pharmacists provided pharmaceutical care for a patient with T2DM and LGMD who developed euDKA after taking empagliflozin. According to the patient’s recent use of medications and his conditions, clinical pharmacists assessed the correlation between euDKA and empagliflozin as “very likely”. As to euDKA, clinical pharmacists suggested discontinuing empagliflozin and metformin, and giving intravenous infusion of 10% Glucose injection instead of 5% Glucose injection for fluid resuscitation. Clinical pharmacists monitored the patient’s laboratory indicators such as arterial blood gas analysis, blood/urine ketones and electrolytes. They assisted physicians to decide when to stop intravenous supplements of liquid and insulin. Clinical pharmacists also assisted physicians to adjust the antidiabetic drugs and educated the patient to avoid empagliflozin or other sodium- glucose linked transporter 2 inhibitors (SGLT2i). RESULTS Physicians adopted the suggestions of clinical pharmacists. After treatment, the patient’s condition improved, and he was allowed to be discharged with medication. CONCLUSIONS euDKA is a relatively rare and serious adverse reaction associated with SGLT2i, and the patients with LGMD are susceptible to euDKA. Clinical pharmacists assist physicians in developing personalized medication plans by evaluating the association between euDKA and empagliflozin, adjusting medication regimens,conducting pharmaceutical monitoring,and other pharmaceutical services. Meanwhile, they provide medication education to patients to ensure their medication safety.
3.Identification of core genes of osteoarthritis by bioinformatics
Xuekun ZHU ; Heng LIU ; Hui FENG ; Yunlong GAO ; Lei WEN ; Xiaosong CAI ; Ben ZHAO ; Min ZHONG
Chinese Journal of Tissue Engineering Research 2025;29(3):637-644
BACKGROUND:At present,osteoarthritis has become a major disease affecting the quality of life of the elderly,and the therapeutic effect is poor,often focusing on preventing the disease process,and the pathogenesis of osteoarthritis is still not fully understood.Bioinformatics analysis was carried out to explore the main pathogenesis of osteoarthritis and related mechanisms of gene coding regulation. OBJECTIVE:To screen core differential genes with a major role in osteoarthritis by gene expression profiling. METHODS:Datasets were downloaded from the Gene Expression Omnibus(GEO):GSE114007,GSE117999,and GSE129147.Differential genes in the GSE114007 and GSE117999 data collections were screened using R software,performing differential genes to weighted gene co-expression network analysis.The module genes most relevant to osteoarthritis were selected to perform protein interaction analysis.Candidate core genes were selected using the cytocape software.The candidate core genes were subsequently subjected to least absolute shrinkage and selection operator regression and COX analysis to identify the core genes with a key role in osteoarthritis.The accuracy of the core genes was validated using an external dataset,GSE129147. RESULTS AND CONCLUSION:(1)A total of 477 differential genes were identified,265 differential genes associated with osteoarthritis were obtained by weighted gene co-expression network analysis,and 8 candidate core genes were identified.The least absolute shrinkage and selection operator regression analysis finally yielded a differential gene ASPM with core value that was externally validated.(2)It is concluded that abnormal gene ASPM expression screened by bioinformatics plays a key central role in osteoarthritis.
4.Outcome after spleen-preserving distal pancreatectomy by Warshaw technique for pancreatic body cancer
Endi ZHOU ; Guodong SHI ; Hongyuan SHI ; Kai ZHANG ; Jishu WEI ; Min TU ; Zipeng LU ; Feng GUO ; Jianmin CHEN ; Kuirong JIANG ; Wentao GAO
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):177-186
Background:
s/Aims: Distal pancreatectomy with splenectomy (DPS) is a common surgical procedure for pancreatic body cancer.However, spleen-preserving distal pancreatectomy (SPDP) utilizing the Warshaw technique (WT) in malignancies is generally not favored due to concerns about inadequate resection. This study aims to assess the feasibility and oncologic outcomes of employing SPDP with WT in pancreatic body cancer.
Methods:
We conducted a retrospective analysis comparing 21 SPDP patients with 63 DPS patients matched by propensity score from January 2018 to November 2022. Clinical outcomes and follow-up data were analyzed using R.
Results:
Both groups exhibited similar demographic, intraoperative, and pathological characteristics, with the exception of a reduced number of total lymph nodes (p = 0.006) in the SPDP group. There were no significant differences in the rates of postoperative complications, recurrence, or metastasis. Local recurrence predominantly occurred in the central region as opposed to the spleen region.There were no cases of isolated recurrences in the splenic region. Median overall survival and recurrence-free survival times were 51.5 months for SPDP vs 30.5 months for DPS and 18.7 months vs 16.8 months, respectively (p > 0.05). The incidence of partial splenic infarction and left-side portal hypertension in the SPDP group was 28.6% (6/21) and 9.5% (2/21), respectively, without necessitating splenic abscess puncture, splenectomy, or causing bleeding from perigastric varices.
Conclusions
SPDP did not negatively impact local recurrence or survival rates in selected pancreatic body cancer patients. Further studies are necessary for validation.
5.Outcome after spleen-preserving distal pancreatectomy by Warshaw technique for pancreatic body cancer
Endi ZHOU ; Guodong SHI ; Hongyuan SHI ; Kai ZHANG ; Jishu WEI ; Min TU ; Zipeng LU ; Feng GUO ; Jianmin CHEN ; Kuirong JIANG ; Wentao GAO
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):177-186
Background:
s/Aims: Distal pancreatectomy with splenectomy (DPS) is a common surgical procedure for pancreatic body cancer.However, spleen-preserving distal pancreatectomy (SPDP) utilizing the Warshaw technique (WT) in malignancies is generally not favored due to concerns about inadequate resection. This study aims to assess the feasibility and oncologic outcomes of employing SPDP with WT in pancreatic body cancer.
Methods:
We conducted a retrospective analysis comparing 21 SPDP patients with 63 DPS patients matched by propensity score from January 2018 to November 2022. Clinical outcomes and follow-up data were analyzed using R.
Results:
Both groups exhibited similar demographic, intraoperative, and pathological characteristics, with the exception of a reduced number of total lymph nodes (p = 0.006) in the SPDP group. There were no significant differences in the rates of postoperative complications, recurrence, or metastasis. Local recurrence predominantly occurred in the central region as opposed to the spleen region.There were no cases of isolated recurrences in the splenic region. Median overall survival and recurrence-free survival times were 51.5 months for SPDP vs 30.5 months for DPS and 18.7 months vs 16.8 months, respectively (p > 0.05). The incidence of partial splenic infarction and left-side portal hypertension in the SPDP group was 28.6% (6/21) and 9.5% (2/21), respectively, without necessitating splenic abscess puncture, splenectomy, or causing bleeding from perigastric varices.
Conclusions
SPDP did not negatively impact local recurrence or survival rates in selected pancreatic body cancer patients. Further studies are necessary for validation.
6.Outcome after spleen-preserving distal pancreatectomy by Warshaw technique for pancreatic body cancer
Endi ZHOU ; Guodong SHI ; Hongyuan SHI ; Kai ZHANG ; Jishu WEI ; Min TU ; Zipeng LU ; Feng GUO ; Jianmin CHEN ; Kuirong JIANG ; Wentao GAO
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):177-186
Background:
s/Aims: Distal pancreatectomy with splenectomy (DPS) is a common surgical procedure for pancreatic body cancer.However, spleen-preserving distal pancreatectomy (SPDP) utilizing the Warshaw technique (WT) in malignancies is generally not favored due to concerns about inadequate resection. This study aims to assess the feasibility and oncologic outcomes of employing SPDP with WT in pancreatic body cancer.
Methods:
We conducted a retrospective analysis comparing 21 SPDP patients with 63 DPS patients matched by propensity score from January 2018 to November 2022. Clinical outcomes and follow-up data were analyzed using R.
Results:
Both groups exhibited similar demographic, intraoperative, and pathological characteristics, with the exception of a reduced number of total lymph nodes (p = 0.006) in the SPDP group. There were no significant differences in the rates of postoperative complications, recurrence, or metastasis. Local recurrence predominantly occurred in the central region as opposed to the spleen region.There were no cases of isolated recurrences in the splenic region. Median overall survival and recurrence-free survival times were 51.5 months for SPDP vs 30.5 months for DPS and 18.7 months vs 16.8 months, respectively (p > 0.05). The incidence of partial splenic infarction and left-side portal hypertension in the SPDP group was 28.6% (6/21) and 9.5% (2/21), respectively, without necessitating splenic abscess puncture, splenectomy, or causing bleeding from perigastric varices.
Conclusions
SPDP did not negatively impact local recurrence or survival rates in selected pancreatic body cancer patients. Further studies are necessary for validation.
7.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
8.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
9.Effects of donor gender on short-term survival of lung transplant recipients: a single-center retrospective cohort study
Xiaoshan LI ; Shiqiang XUE ; Min XIONG ; Rong GAO ; Ting QIAN ; Lin MAN ; Bo WU ; Jingyu CHEN
Organ Transplantation 2025;16(4):591-598
Objective To evaluate the effect of donor gender on short-term survival rate of lung transplant recipients. Methods A retrospective analysis was conducted on the data of 1 066 lung transplant recipients. The log-rank test was used to evaluate the differences in short-term fatality among different donor gender groups and donor-recipient gender combination groups. Multivariate Cox regression, propensity score (PS) regression, and propensity score matching (PSM) were employed to control for confounding factors and further assess the differences in fatality. Subgroup analyses were also performed based on donor gender. Results Multivariate Cox regression analysis showed no statistically significant differences in fatality at 30 days, 1 year, 2 years and 3 years postoperatively between male and female donor groups (all P>0.05). After PS regression and PSM, univariate Cox regression analysis indicated that recipients from female donors had a higher fatality at 2 years postoperatively compared to those from male donors, with hazard ratios (95% confidence intervals) of 1.29 (1.01-1.65) and 1.36 (1.03-1.80) respectively. Multivariate Cox regression analysis also revealed no statistically significant differences in fatality at various follow-up time points among different donor-recipient gender combination groups (all P>0.05). Subgroup analyses based on donor sex showed no statistically significant differences in fatality among recipients of different gender within either male or female donor groups (all P>0.05). Conclusions Female donors may reduce the short-term postoperative survival rate of lung transplant recipients, but this negative impact is not sustainable in the long term. At present, there is no evidence to support the inclusion of sex as a factor in lung allocation rules.
10.Clinical features analysis of fulminant type 1 diabetes mellitus
Min GAO ; Yonghao FENG ; Xiaohong SHI
Chinese Journal of Clinical Medicine 2025;32(3):472-478
Objective To explore the clinical features of fulminant type 1 diabetes mellitus (FT1DM). Methods The clinical data of 6 patients with FT1DM who were hospitalized in Jinshan Hospital of Fudan University from April 2020 to August 2024 were retrospectively analyzed. Their data were compared with that of 30 patients diagnosed with non-fulminant type 1 diabetes mellitus (NFT1DM) and diabetic ketosis or diabetic ketoacidosis (DKA) who were admitted to the hospital during the same period. The clinical characteristics of FT1DM were summarized. Results All 6 patients with FT1DM were male, with a disease course of 2.00 (1.75, 4.00) d. Three cases exhibited a history of prior infection, four tested positive for glutamic acid decarboxylase antibody (GADA), and five developed severe DKA. The glycated hemoglobin A1C (HbA1C) was (6.30±0.67) %, fasting C-peptide (FCP) was 0.07 (0.03, 0.15) ng/mL, 2-hour postprandial C-peptide (2h-CP) was 0.09 (0.03, 0.16) ng/mL. At discharge, all 6 patients received 4-injection insulin regimen, with a dose (0.69±0.15) U·kg−1·d−1. The body mass index (BMI), blood glucose/HbA1C, blood potassium/HbA1C, fasting plasma glucose (FPG), 2-hour postprandial plasma glucose (2h-PG), high-sensitivity C-reactive protein (hs-CRP), alanine aminotransferase (ALT), serum creatinine, and blood potassium levels in the FT1DM group were higher than those in the NFT1DM group (P<0.05), while HbA1C and glycated albumin (GA) levels were lower than NFT1DM group (P<0.05). Conclusions FT1DM usually presents with an acute onset of DKA, may be accompanied by a history of preceding infection, and GADA can be positive. Patients with FT1DM have elevated blood glucose/HbA1C, blood potassium/HbA1C, FPG, 2h-PG, hs-CRP, ALT, serum creatinine, blood potassium levels, and require insulin therapy, while the HbA1C and GA levels are lower.

Result Analysis
Print
Save
E-mail