1.Relationship between time in range and corneal nerve fiber loss in asymptomatic patients with type 2 diabetes.
Weijing ZHAO ; Jingyi LU ; Lei ZHANG ; Wei LU ; Wei ZHU ; Yuqian BAO ; Jian ZHOU
Chinese Medical Journal 2022;135(16):1978-1985
BACKGROUND:
Corneal confocal microscopy (CCM) is a noninvasive technique to detect early nerve damage of diabetic sensorimotor polyneuropathy (DSPN). Time in range (TIR) is an emerging metric of glycemic control which was reported to be associated with diabetic complications. We sought to explore the relationship between TIR and corneal nerve parameters in asymptomatic patients with type 2 diabetes (T2DM).
METHODS:
In this cross-sectional study, 206 asymptomatic inpatients with T2DM were recruited. After 7 days of continuous glucose monitoring, the TIR was calculated as the percentage of time in the glucose range of 3.9 to 10.0 mmol/L. CCM was performed to determine corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length (CNFL). Abnormal CNFL was defined as ≤15.30 mm/mm 2 .
RESULTS:
Abnormal CNFL was found in 30.6% (63/206) of asymptomatic subjects. Linear regression analyses revealed that TIR was positively correlated with CCM parameters both in the crude and adjusted models (all P < 0.05). Each 10% increase in TIR was associated with a 28.2% (95% CI: 0.595-0.866, P = 0.001) decreased risk of abnormal CNFL after adjusting for covariates. With the increase of TIR quartiles, corneal nerve fiber parameters increased significantly (all P for trend <0.01). The receiver operating characteristic curve indicated that the optimal cutoff point of TIR was 77.5% for predicting abnormal CNFL in asymptomatic patients.
CONCLUSIONS
There is a significant independent correlation between TIR and corneal nerve fiber loss in asymptomatic T2DM patients. TIR may be a useful surrogate marker for early diagnosis of DSPN.
Humans
;
Diabetes Mellitus, Type 2/complications*
;
Cross-Sectional Studies
;
Blood Glucose Self-Monitoring
;
Blood Glucose
;
Nerve Fibers
;
Diabetic Neuropathies
;
Cornea
;
Microscopy, Confocal/methods*
2.Confocal probe localization algorithm based on region growing and endoscope size prior.
Yuying LIU ; Yifan WANG ; Siyang ZUO
Journal of Biomedical Engineering 2022;39(5):945-957
Confocal laser endomicroscopy technology can obtain cell-level images in real time and in situ, which can assist doctors in real-time intraoperative diagnosis, but its non-invasiveness makes it difficult to relocate the optical biopsy site. The confocal probe localization algorithm can automatically calculate the coordinates of the probe tip, that is, the coordinates of the optical biopsy site. In this paper, a confocal probe localization algorithm based on region growing and endoscope size prior was proposed. The algorithm detected the probe region by region growing on the probe edge image, then searched for tip points based on a given probe axis, and iteratively optimized it. Finally, based on the single-degree-of-freedom motion characteristics of the probe, the three-dimensional coordinates of the tip of the probe were calculated by using the prior information of the size of the endoscope, which solved the scale uncertainty problem of the monocular camera. The confocal probe localization algorithm was tested on the dataset collected in this paper. The results showed that our algorithm no longer relied on the color information of the probe, avoided the influence of uneven illumination on the gray value of the probe pixels, and had a more robust location accuracy and running speed. Within the length of the probe extending out of the endoscope from 0 to 5 cm, the pixel error could be as low as 11.76 pixels, and the average relative position error could be as low as 1.66 mm, which can achieve the real-time and accurate localization of the confocal probe.
Endoscopes
;
Algorithms
;
Microscopy, Confocal/methods*
3.Application of Autofluorescence for Confocal Microscopy to Aid in Archaeoparasitological Analyses
Johnica Jo MORROW ; Christian ELOWSKY
The Korean Journal of Parasitology 2019;57(6):581-585
Confocal laser scanning microscopy (CLSM) was used to examine archaeoparasitological specimens from coprolites associated with La Cueva de los Muertos Chiquitos (CMC) located near present-day Durango, Mexico. The eggs for 4 different types of parasites recovered from CMC coprolites were imaged using CLSM to assist with identification efforts. While some of the parasite eggs recovered from CMC coprolites were readily identified using standard light microscopy (LM), CLSM provided useful data for more challenging identifications by highlighting subtle morphological features and enhancing visualization of parasite egg anatomy. While other advanced microscopy techniques, such as scanning electron microscopy (SEM), may also detect cryptic identifying characters, CLSM is less destructive to the specimens. Utilizing CLSM allows for subsequent examinations, such as molecular analyses, that cannot be performed following SEM sample preparation and imaging. Furthermore, CLSM detects intrinsic autofluorescence molecules, making improved identification independent of resource and time-intensive protocols. These aspects of CLSM make it an excellent method for assisting in taxonomic identification and for acquiring more detailed images of archaeoparasitological specimens.
Eggs
;
Methods
;
Mexico
;
Microscopy
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Ovum
;
Parasites
4.Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods
Seung Jin JEONG ; Hye Won CHO ; Ji Hye JUNG ; Jeong Mi KIM ; Yu Lee KIM
The Journal of Korean Academy of Prosthodontics 2019;57(3):211-218
PURPOSE: The purpose of the present study was to compare the accuracy of four different metal copings fabricated by CAD/CAM technology and to evaluate clinical effectiveness. MATERIALS AND METHODS: Composite resin tooth of the maxillary central incisor was prepared for a metal ceramic crown and duplicated metal die was fabricated. Then scan the metal die for 12 times to obtain STL files using a confocal microscopy type oral scanner. Metal copings with a thickness of 0.5 mm and a cement space of 50 µm were designed on a CAD program. The Co-Cr metal copings were fabricated by the following four methods: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). Silicone replica technique was used to measure marginal and internal discrepancies. The data was statistically analyzed with One-way analysis of variance and appropriate post hoc test (Scheffe test) (α=.05). RESULTS: Mean marginal discrepancy was significantly smaller in the Group WM (27.66 ± 9.85 µm) and Group MS (28.88 ± 10.13 µm) than in the Group RP (38.09 ± 11.14 µm). Mean cervical discrepancy was significantly smaller in the Group MS than in the Group RP. Mean axial discrepancy was significantly smaller in the Group WM and Group MS then in the Group RP and Group SLM. Mean incisal discrepancies was significantly smaller in the Group RP than in all other groups. CONCLUSION: The marginal and axial discrepancies of the Co-Cr coping fabricated by the Wax pattern milling and Milling/Sintering method were better than those of the other groups. The marginal, cervical and axial fit of Co-Cr copings in all groups are within a clinically acceptable range.
Ceramics
;
Crowns
;
Dental Marginal Adaptation
;
Freezing
;
Incisor
;
Methods
;
Microscopy, Confocal
;
Printing, Three-Dimensional
;
Replica Techniques
;
Silicon
;
Silicones
;
Tooth
;
Treatment Outcome
5.Monitoring Glutathione Dynamics and Heterogeneity in Living Stem Cells
Eui Man JEONG ; Ji Woong SHIN ; Jisun LIM ; Ju Hwan KIM ; Hyewon KANG ; Yingfu YIN ; Hye Mi KIM ; YongHwan KIM ; Sun Gi KIM ; Heun Soo KANG ; Dong Myung SHIN ; Kihang CHOI ; In Gyu KIM
International Journal of Stem Cells 2019;12(2):367-379
Glutathione (GSH) is a major antioxidant in cells, and plays vital roles in the cellular defense against oxidants and in the regulation of redox signals. In a previous report, we demonstrated that stem cell function is critically affected by heterogeneity and dynamic changes in cellular GSH concentration. Here, we present a detailed protocol for the monitoring of GSH concentration in living stem cells using FreSHtracer, a real-time GSH probe. We describe the steps involved in monitoring GSH concentration in single living stem cells using confocal microscopy and flow cytometry. These methods are simple, rapid, and quantitative, and able to demonstrate intracellular GSH concentration changes in real time. We also describe the application of FreSHtracer to the sorting of stem cells according to their GSH content using flow cytometry. Typically, microscopic or flow cytometric analyses of FreSHtracer and MitoFreSHtracer signals in living stem cells take ~2~3 h, and the fractionation of stem cells into subpopulations on the basis of cellular GSH levels takes 3~4.5 h. This method could be applied to almost every kind of mammalian cell with minor modifications to the protocol described here.
Flow Cytometry
;
Fluorescent Dyes
;
Glutathione
;
Methods
;
Microscopy, Confocal
;
Oxidants
;
Oxidation-Reduction
;
Population Characteristics
;
Stem Cells
6.The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs
Ji Yoon LEE ; Kyoung Hwa KIM ; Shin Young PARK ; Sung Young YOON ; Gon Ho KIM ; Yong Moo LEE ; In Chul RHYU ; Yang Jo SEOL
Journal of Periodontal & Implant Science 2019;49(5):319-329
PURPOSE: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. METHODS: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas–only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). RESULTS: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. CONCLUSIONS: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.
Bacterial Load
;
Biofilms
;
Decontamination
;
Helium
;
In Vitro Techniques
;
Methods
;
Microbial Viability
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Plasma Gases
;
Plasma
;
Porphyromonas gingivalis
;
Porphyromonas
;
Stem Cells
;
Titanium
7.Accelerated and enhanced osteointegration of MAO-treated implants: histological and histomorphometric evaluation in a rabbit model.
Xin LI ; Haiyang XU ; Baodong ZHAO ; Shuai JIANG
International Journal of Oral Science 2018;10(2):11-11
Microarc oxidation (MAO) has become a promising technique for the surface modification of implants. Therefore, the aims of this study were to further quantitatively and qualitatively evaluate the osteointegration abilities of MAO-treated and smooth surface (SF) implants in vivo and to investigate the areas in which the superiority of MAO-treated implants are displayed. In a rabbit model, a comprehensive histomorphological, osteogenic, mineralizational, and integrative assessment was performed using light microscopy, fluorescence microscopy, confocal laser scanning microscopy, and radiographic analyses. Compared with the SF groups, the MAO-treated groups exhibited more active contact osteogenesis, as well as distant osteogenesis, under fluorescence examination, the mineral apposition rate was found to be greater for all of the MAO-treated implants, and the osteointegration index (OI) value was greater in the MAO-treated groups at different times. In conclusion, the calcium-rich amorphous layer created by MAO provided a better environment for osteointegration, with more active contact osteogenesis, a more rapid mineral apposition rate and greater OI values.
Animals
;
Bone-Implant Interface
;
physiology
;
Dental Implantation, Endosseous
;
methods
;
Dental Implants
;
Femur
;
surgery
;
Implants, Experimental
;
Materials Testing
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Microscopy, Fluorescence
;
Models, Animal
;
Osseointegration
;
physiology
;
Oxidation-Reduction
;
Rabbits
;
Spectrometry, X-Ray Emission
;
Surface Properties
;
Titanium
8.Comparison of periodontitis-associated oral biofilm formation under dynamic and static conditions.
Won Sub SONG ; Jae Kwan LEE ; Se Hwan PARK ; Heung Sik UM ; Si Young LEE ; Beom Seok CHANG
Journal of Periodontal & Implant Science 2017;47(4):219-230
PURPOSE: The purpose of this study was to compare the characteristics of single- and dual-species in vitro oral biofilms made by static and dynamic methods. METHODS: Hydroxyapatite (HA) disks, 12.7 mm in diameter and 3 mm thick, were coated with processed saliva for 4 hours. The disks were divided into a static method group and a dynamic method group. The disks treated with a static method were cultured in 12-well plates, and the disks in the dynamic method group were cultured in a Center for Disease Control and Prevention (CDC) biofilm reactor for 72 hours. In the single- and dual-species biofilms, Fusobacterium nucleatum and Porphyromonas gingivalis were used, and the amount of adhering bacteria, proportions of species, and bacterial reduction of chlorhexidine were examined. Bacterial adhesion was examined with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). RESULTS: Compared with the biofilms made using the static method, the biofilms made using the dynamic method had significantly lower amounts of adhering and looser bacterial accumulation in SEM and CLSM images. The proportion of P. gingivalis was higher in the dynamic method group than in the static method group; however, the difference was not statistically significant. Furthermore, the biofilm thickness and bacterial reduction by chlorhexidine showed no significant differences between the 2 methods. CONCLUSIONS: When used to reproduce periodontal biofilms composed of F. nucleatum and P. gingivalis, the dynamic method (CDC biofilm reactor) formed looser biofilms containing fewer bacteria than the well plate. However, this difference did not influence the thickness of the biofilms or the activity of chlorhexidine. Therefore, both methods are useful for mimicking periodontitis-associated oral biofilms.
Bacteria
;
Bacterial Adhesion
;
Biofilms*
;
Centers for Disease Control and Prevention (U.S.)
;
Chlorhexidine
;
Durapatite
;
Electron Microscope Tomography
;
Fusobacterium nucleatum
;
In Vitro Techniques
;
Methods
;
Microscopy, Confocal
;
Microscopy, Electron, Scanning
;
Periodontitis
;
Porphyromonas gingivalis
;
Saliva
9.Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy.
Woong Bae YOON ; Hyunjin KIM ; Kwang Gi KIM ; Yongdoo CHOI ; Hee Jin CHANG ; Dae Kyung SOHN
Healthcare Informatics Research 2016;22(3):238-242
OBJECTIVES: We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. METHODS: We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. RESULTS: An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. CONCLUSIONS: The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.
Diagnosis
;
Eosine Yellowish-(YS)
;
Fluorescence
;
Hematoxylin*
;
Image Processing, Computer-Assisted
;
Methods*
;
Microscopy
;
Microscopy, Confocal*
;
Staining and Labeling
10.A precise tooth preparation technique assisted with quantitive bur and microscope.
Duanjing CHEN ; Yiyuan LI ; Jun-ying LI ; Tian LUO ; Zhi LI ; Haiyang YU
West China Journal of Stomatology 2016;34(3):325-327
Although traditional tooth preparation techniques (e.g., depth-groove-guided and index-guided techniques) are designed to improve preparation precision, the results are unsatisfactory because of the lack of proper estimating tools. This study proposed a novel technique, in which relevant details for preparation of drilling holes are provided and corresponding depth is estimated using a quantitive bur under a microscope. This technique offers a viable option for precise tooth preparation.
Humans
;
Microscopy, Confocal
;
Tooth Preparation
;
methods

Result Analysis
Print
Save
E-mail