1.Bear bile powder alleviates Parkinson's disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation.
Lupeng WANG ; Yuyan BAI ; Yanlin TAO ; Wei SHEN ; Houyuan ZHOU ; Yixin HE ; Hui WU ; Fei HUANG ; Hailian SHI ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(9):710-720
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.
Humans
;
Mice
;
Rats
;
Animals
;
Aged
;
Middle Aged
;
Parkinson Disease/pathology*
;
Astrocytes/pathology*
;
Powders/therapeutic use*
;
Ursidae/metabolism*
;
NF-kappa B/metabolism*
;
Neuroinflammatory Diseases
;
Neurodegenerative Diseases/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Bile
;
Mice, Inbred C57BL
;
Microglia
;
Disease Models, Animal
2.The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities.
Qiyuan ZHUANG ; Hui YANG ; Ying MAO
Neuroscience Bulletin 2023;39(3):393-408
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Humans
;
Glioma/metabolism*
;
Neuroglia/metabolism*
;
Carcinogenesis/pathology*
;
Neural Stem Cells/metabolism*
;
Microglia/metabolism*
;
Brain Neoplasms/metabolism*
;
Tumor Microenvironment
4.NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction.
Lin XU ; Xiaofei QIU ; Shuo WANG ; Qingshan WANG ; Xiu-Lan ZHAO
Neuroscience Bulletin 2019;35(2):347-361
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Animals
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Cognitive Dysfunction
;
drug therapy
;
metabolism
;
pathology
;
Disease Models, Animal
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Hydrocarbons, Brominated
;
Inflammasomes
;
drug effects
;
metabolism
;
Male
;
Maze Learning
;
drug effects
;
physiology
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Nootropic Agents
;
pharmacology
;
Random Allocation
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
metabolism
;
Spatial Memory
;
drug effects
;
physiology
;
Specific Pathogen-Free Organisms
5.Extract of Fructus Schisandrae chinensis Inhibits Neuroinflammation Mediator Production from Microglia via NF-κ B and MAPK Pathways.
Fang-Jiao SONG ; Ke-Wu ZENG ; Jin-Feng CHEN ; Yuan LI ; Xiao-Min SONG ; Peng-Fei TU ; Xue-Mei WANG
Chinese journal of integrative medicine 2019;25(2):131-138
OBJECTIVE:
To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.
METHODS:
Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.
RESULTS:
EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).
CONCLUSION
EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.
Animals
;
Astrocytes
;
drug effects
;
metabolism
;
pathology
;
Cell Line
;
Cell Nucleus
;
drug effects
;
metabolism
;
Chromatography, High Pressure Liquid
;
Down-Regulation
;
drug effects
;
Inflammation
;
pathology
;
Inflammation Mediators
;
metabolism
;
Lipopolysaccharides
;
MAP Kinase Signaling System
;
drug effects
;
Mice, Inbred ICR
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NF-kappa B
;
metabolism
;
Nervous System
;
pathology
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Schisandra
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization
6.Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes.
Gang CHEN ; Xin LUO ; M Yawar QADRI ; Temugin BERTA ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):98-108
Increasing evidence suggests that spinal microglia regulate pathological pain in males. In this study, we investigated the effects of several microglial and astroglial modulators on inflammatory and neuropathic pain following intrathecal injection in male and female mice. These modulators were the microglial inhibitors minocycline and ZVEID (a caspase-6 inhibitor) and the astroglial inhibitors L-α-aminoadipate (L-AA, an astroglial toxin) and carbenoxolone (a connexin 43 inhibitor), as well as U0126 (an ERK kinase inhibitor) and D-JNKI-1 (a c-Jun N-terminal kinase inhibitor). We found that spinal administration of minocycline or ZVEID, or Caspase6 deletion, reduced formalin-induced inflammatory and nerve injury-induced neuropathic pain primarily in male mice. In contrast, intrathecal L-AA reduced neuropathic pain but not inflammatory pain in both sexes. Intrathecal U0126 and D-JNKI-1 reduced neuropathic pain in both sexes. Nerve injury caused spinal upregulation of the astroglial markers GFAP and Connexin 43 in both sexes. Collectively, our data confirmed male-dominant microglial signaling but also revealed sex-independent astroglial signaling in the spinal cord in inflammatory and neuropathic pain.
2-Aminoadipic Acid
;
toxicity
;
Animals
;
Anti-Inflammatory Agents
;
therapeutic use
;
Astrocytes
;
pathology
;
Carbenoxolone
;
pharmacology
;
Caspase 6
;
deficiency
;
metabolism
;
Connexin 43
;
metabolism
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Enzyme Inhibitors
;
pharmacology
;
Female
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Male
;
Mice
;
Mice, Transgenic
;
Microglia
;
pathology
;
Minocycline
;
therapeutic use
;
Neuralgia
;
chemically induced
;
drug therapy
;
pathology
;
Pain Measurement
;
Phenylurea Compounds
;
pharmacology
;
Sex Characteristics
;
Spinal Cord
;
pathology
;
Time Factors
7.Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats.
Meng-Xian PAN ; Jun-Chun TANG ; Rui LIU ; Yu-Gong FENG ; Qi WAN
Chinese Journal of Traumatology 2018;21(4):224-228
PURPOSETo investigate the effects of estrogen G protein-coupled receptor 30 (GPR30) agonist G1 on hippocampal neuronal apoptosis and microglial polarization in rat traumatic brain injury (TBI).
METHODSMale SD rats were randomly divided into sham group, TBI + vehicle group, TBI + G1 group. Experimental moderate TBI was induced using Feeney's weigh-drop method. G1 (100μg/kg) or vehicle was intravenously injected from femoral vein at 30 min post-injury. Rats were sacrificed at 24 h after injury for detection of neuronal apoptosis and microglia polarization. Neuronal apoptosis was assayed by immunofluorescent staining of active caspase-3. M1 type microglia markers (iNOS and IL-1β) and M2 type markers (Arg1 and IL-4) were examined by immunoblotting or ELISA. Total protein level of Akt and phosphorylated Akt were assayed by immunoblotting.
RESULTSG1 significantly reduced active caspase-3 positive neurons in hippocampus. Meanwhile G1 increased the ratio of Arg1/iNOS. IL-1β production was decreased but IL-4 was increased after G1 treatment. G1 treatment also increased the active form of Akt.
CONCLUSIONSGPR30 agonist G1 inhibited neuronal apoptosis and favored microglia polarization to M2 type.
Animals ; Apoptosis ; drug effects ; Brain Injuries, Traumatic ; drug therapy ; pathology ; Cell Polarity ; Hippocampus ; drug effects ; Interleukin-1beta ; biosynthesis ; Male ; Microglia ; drug effects ; Neurons ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; agonists
8.Cellular microparticles and pathophysiology of traumatic brain injury.
Zilong ZHAO ; Yuan ZHOU ; Ye TIAN ; Min LI ; Jing-Fei DONG ; Jianning ZHANG
Protein & Cell 2017;8(11):801-810
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The finding that cellular microparticles (MPs) generated by injured cells profoundly impact on pathological courses of TBI has paved the way for new diagnostic and therapeutic strategies. MPs are subcellular fragments or organelles that serve as carriers of lipids, adhesive receptors, cytokines, nucleic acids, and tissue-degrading enzymes that are unique to the parental cells. Their sub-micron sizes allow MPs to travel to areas that parental cells are unable to reach to exercise diverse biological functions. In this review, we summarize recent developments in identifying a casual role of MPs in the pathologies of TBI and suggest that MPs serve as a new class of therapeutic targets for the prevention and treatment of TBI and associated systemic complications.
Animals
;
Astrocytes
;
metabolism
;
pathology
;
Biological Transport
;
Blood Coagulation Factors
;
genetics
;
metabolism
;
Brain
;
metabolism
;
pathology
;
physiopathology
;
Brain Injuries, Traumatic
;
genetics
;
metabolism
;
pathology
;
physiopathology
;
Cell-Derived Microparticles
;
chemistry
;
metabolism
;
pathology
;
Cytokines
;
blood
;
genetics
;
Disease Models, Animal
;
Disseminated Intravascular Coagulation
;
genetics
;
metabolism
;
pathology
;
physiopathology
;
Gene Expression Regulation
;
Humans
;
Microglia
;
metabolism
;
pathology
;
Neurons
;
metabolism
;
pathology
;
Signal Transduction
9.Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase.
Yi LIANG ; Jun-Ying DU ; Yu-Jie QIU ; Jun-Fan FANG ; Jin LIU ; Jian-Qiao FANG
Chinese journal of integrative medicine 2016;22(9):704-713
OBJECTIVETo investigate whether analgesic effect of electroacupuncture (EA) is affected by p38 mitogen-activated protein kinase (p38 MAPK) on microglia.
METHODSThere were two experiments. The experiment 1: 40 male Sprague-Dawley (SD) rats were randomly divided into the normal, surgery, EA and sham EA groups, and the L5 spinal nerve ligation (SNL) on the right side was used to establish neuropathic pain model. EA was applied to bilateral Zusanli (ST36) and Kunlun (BL60) at 24, 48 and 72 h after SNL for 30 min, once per day. The paw withdrawal thresholds (PWTs) were measured before surgery (as base) and at 24, 25, 49 and 73 h after surgery. Phospho-p38 MAPK (p-p38 MAPK), oxycocin-42 (OX-42, marker of microglia), and glial fibrillary acidic protein (GFAP, marker of astrocyte) in bilateral spinal cord dorsal horn (SCDH) were detected by immunofluorescence, respectively. The experiment 2: 40 male SD rats were cannulated for SNL-induced neuropathic pain, and then were randomly divided into the dimethyl sulfoxide (DMSO), EA plus DMSO, 4-(4-fluorophenyl)-2-(4-methylsulfonylpheny)-5-(4-pyridyl)-1H-imidazole (SB203580) and EA plus SB203580 groups. SB203580 (30 nmol/L) was administered 5 min prior to EA treatment. The PWTs and OX-42 in bilateral SCDH were measured as mentioned above.
RESULTSSNL-induced neuropathic pain reduced PWTs and increased the expression of p-p38 MAPK and OX-42 in bilateral lumbar SCDH of rats (P<0.01). Spinal p-p38 MAPK was only co-localized with OX-42 in our study. EA treatment significantly alleviated SNL-mediated mechanical hyperalgesia, and suppressed the expression of p-p38 MAPK and OX-42 in lumbar SCDH (P<0.05 or P<0.01). Intrathecal injection of low dose SB203580 had no influence on PWTs (P>0.05), but significantly inhibited the expression of OX-42 positive cells in bilateral SCDH (P<0.01 or P<0.05). EA plus SB203580 synergistically increased PWTs, and reduced the expression of bilateral spinal OX-42 (P<0.01 or P<0.05).
CONCLUSIONSThe central mechanism of EA-induced anti-hyperalgesia may be partially associated with the reduced expression of p-p38 MAPK, and subsequently reducing the activation of OX-42 in neuropathic pain. Therefore, EA may be a new complementary and alternative therapy for neuropathic pain.
Animals ; Biomarkers ; metabolism ; CD11b Antigen ; metabolism ; Electroacupuncture ; Fluorescent Antibody Technique ; Hyperalgesia ; pathology ; therapy ; Imidazoles ; pharmacology ; Ligation ; Male ; Microglia ; drug effects ; enzymology ; pathology ; Neuroglia ; drug effects ; metabolism ; Phosphorylation ; drug effects ; Posterior Horn Cells ; drug effects ; enzymology ; pathology ; Pyridines ; pharmacology ; Rats, Sprague-Dawley ; Spinal Nerves ; drug effects ; pathology ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia.
Jintao BAO ; Liangjun ZHENG ; Qi ZHANG ; Xinya LI ; Xuefei ZHANG ; Zeyang LI ; Xue BAI ; Zhong ZHANG ; Wei HUO ; Xuyang ZHAO ; Shujiang SHANG ; Qingsong WANG ; Chen ZHANG ; Jianguo JI
Protein & Cell 2016;7(6):417-433
Microglia play a pivotal role in clearance of Aβ by degrading them in lysosomes, countering amyloid plaque pathogenesis in Alzheimer's disease (AD). Recent evidence suggests that lysosomal dysfunction leads to insufficient elimination of toxic protein aggregates. We tested whether enhancing lysosomal function with transcription factor EB (TFEB), an essential regulator modulating lysosomal pathways, would promote Aβ clearance in microglia. Here we show that microglial expression of TFEB facilitates fibrillar Aβ (fAβ) degradation and reduces deposited amyloid plaques, which are further enhanced by deacetylation of TFEB. Using mass spectrometry analysis, we firstly confirmed acetylation as a previously unreported modification of TFEB and found that SIRT1 directly interacted with and deacetylated TFEB at lysine residue 116. Subsequently, SIRT1 overexpression enhanced lysosomal function and fAβ degradation by upregulating transcriptional levels of TFEB downstream targets, which could be inhibited when TFEB was knocked down. Furthermore, overexpression of deacetylated TFEB at K116R mutant in microglia accelerated intracellular fAβ degradation by stimulating lysosomal biogenesis and greatly reduced the deposited amyloid plaques in the brain slices of APP/PS1 transgenic mice. Our findings reveal that deacetylation of TFEB could regulate lysosomal biogenesis and fAβ degradation, making microglial activation of TFEB a possible strategy for attenuating amyloid plaque deposition in AD.
Alzheimer Disease
;
metabolism
;
pathology
;
Amyloid beta-Peptides
;
metabolism
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
chemistry
;
genetics
;
metabolism
;
Brain
;
metabolism
;
Cells, Cultured
;
Chloride Channels
;
genetics
;
metabolism
;
Disease Models, Animal
;
HEK293 Cells
;
Humans
;
Lysosomes
;
genetics
;
metabolism
;
Mice
;
Mice, Transgenic
;
Microglia
;
cytology
;
metabolism
;
Mutagenesis, Site-Directed
;
Peptides
;
analysis
;
chemistry
;
Protein Binding
;
RNA Interference
;
Sirtuin 1
;
antagonists & inhibitors
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail