1.Astragaloside Ⅳ inhibits inflammation after cerebral ischemia in rats through promoting microglia/macrophage M2 polarization.
Xintian ZHENG ; Haiyan GAN ; Lin LI ; Xiaowei HU ; Yan FANG ; Lisheng CHU
Journal of Zhejiang University. Medical sciences 2020;49(6):679-686
OBJECTIVE:
To investigate the effects of astragaloside Ⅳ (AS-Ⅳ) on microglia/macrophage M1/M2 polarization and inflammatory response after cerebral ischemia in rats.
METHODS:
Forty eight male SD rats were randomly divided into sham operation control group, model control group and AS-Ⅳ group with 16 rats in each. Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery (MCAO) using the intraluminal filament. After ischemia induced, the rats in AS-Ⅳ group were intraperitoneally injected with 40 mg/kg AS-Ⅳ once a day for 3 days. The neurological functions were evaluated by the modified neurological severity score (mNSS) and the corner test on d1 and d3 after modelling. The infarct volume was measured by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining on d3 after ischemia. The expression of M1 microglia/macrophage markers CD86, inducible nitric oxide synthase (iNOS) and pro-inflammatory factors TNF-α, IL-1β, IL-6, M2 microglia/macrophages markers CD206, arginase-1 (Arg-1), chitinase-like protein (YM1/2) and anti-inflammatory factors interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) was detected by real-time RT-PCR. The expression of CD16/32/Iba1 and CD206/Iba1 was determined by double labeling immunefluorescence method in the peripheral area of cerebral ischemia.
RESULTS:
Compared with model control group, AS-Ⅳ treatment improved neurological function recovery and reduced infarct volume after ischemia (
CONCLUSIONS
The findings suggest that AS-Ⅳ ameliorates brain injury after cerebral ischemia in rats, which may be related to inhibiting inflammation through promoting the polarization of the microglia/macrophage from M1 to M2 phenotype in the ischemic brain.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Brain Ischemia/drug therapy*
;
Cell Polarity/drug effects*
;
Inflammation/drug therapy*
;
Macrophages/drug effects*
;
Male
;
Microglia/drug effects*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
2.Identification of active components in Longxue Tongluo Capsules against ischemic brain injury based on component-activity relationship.
Jing SUN ; Xiao-Nan CHEN ; Jia-Ni LIU ; Peng-Wei GUAN ; Chao-Chao WANG ; Bo PAN ; Dao-Ran PANG ; Shan-Shan LI ; Jiao ZHENG ; Wen-Zhe HUANG ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2019;44(1):150-157
Ten fractions(A-J) were prepared by separation of Longxue Tongluo Capsules(LTC) by using silica gel column chromatography and orthogonal experimental design,showing similar chemical profiles with different abundances of peaks.These ten samples were assessed with UHPLC-QE OrbitrapHRMS for 97 common peaks.For the pharmacological activity experiment,three kinds of in vitro cell models including lipopolysaccharide(LPS)-induced BV-2 microglial cells NO release model,oxygen-glucose deprivation/reoxygenation(OGD/R)-treated HUVEC vascular endothelial cells injury model,and OGD/R-treated PC-12 nerve cells injury model were employed to evaluated the bioactivity of each fraction.Based on the contribution of each identified component,grey relation analysis and partial least squares(PLS) analysis were performed to establish component-activity relationship of LTC,identify the potential active components.After that,validation of the potential active components in LTC was carried out by using the same models.The results indicated that 4 phenolic compounds including 7,4'-dihydroxyhomoisoflavanone,loureirin C,4,4'-dihydroxy-2,6-dimethoxydihydrochalcone,and homoisosocotrin-4'-ol,might be the active components for anti-neuroinflammation effect;five phenolic compounds such as 3,5,7,4'-tetrahydroxyhomoisoflavanone,loureirin D,7,4'-dihydroxyhomoisoflavane,and 5,7-dihydroxy-4'-methoxy-8-methyflavane,might have positive effects on the vascular endothelial injury;three phenolic compounds including 5,7,4'-trihydroxyflavanone,7,4'-dihydroxy-5-methoxyhomoisoflavane,and loureirin D,might be the active components in LTC against neuronal injury.
Brain Ischemia
;
drug therapy
;
Capsules
;
Cell Line
;
Drugs, Chinese Herbal
;
pharmacology
;
Glucose
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Microglia
;
drug effects
;
Oxygen
3.Dexmedetomidine reduces hippocampal microglia inflammatory response induced by surgical injury through inhibiting NLRP3.
Ji PENG ; Peng ZHANG ; Han ZHENG ; Yun-Qin REN ; Hong YAN
Chinese Journal of Traumatology 2019;22(3):161-165
PURPOSE:
To investigate whether dexmedetomidine (Dex) can reduce the production of inflammatory factor IL-1β by inhibiting the activation of NLRP3 inflammasome in hippocampal microglia, thereby alleviating the inflammatory response of the central nervous system induced by surgical injury.
METHODS:
Exploratory laparotomy was used in experimental models in this study. Totally 48 Sprague Dawley male rats were randomly divided into 4 groups (n = 12 for each), respectively sham control (group A), laparotomy only (group B); and Dex treatment with different doses of 5 μg/kg (group D1) or 10 μg/kg (group D2). Rats in groups D1 and D2 were intraperitoneally injected with corresponding doses of Dex every 6 h. The rats were sacrificed 12 h after operation; the hippocampus tissues were isolated, and frozen sections were made. The microglia activation was estimated by immunohistochemistry. The protein expression of NLRP3, caspase-1, ASC and IL-1β were detected by immunoblotting. All data were presented as mean ± standard deviation, and independent sample t test was used to analyze the statistical difference between groups.
RESULTS:
The activated microglia in the hippocampus of the rats significantly increased after laparotomy (group B vs. sham control, p < 0.01). After Dex treatment, the number was decreased in a dose-dependent way (group D1 vs. D2, p < 0.05), however the activated microglia in both groups were still higher than that of sham controls (both p < 0.05). Further Western blot analysis showed that the protein expression levels of NLRP3, caspase-1, ASC and downstream cytokine IL-1β in the hippocampus from the laparotomy group were significantly higher than those of the sham control group (all p < 0.01). The elevated expression of these proteins was relieved after Dex treatment, also in a dose-dependent way (D2 vs. D1 group, p < 0.05).
CONCLUSION
Dex can inhibit the activation of microglia and NLRP3 inflammasome in the hippocampus of rats after operation, and the synthesis and secretion of IL-1β are also reduced in a dose-dependent manner by using Dex. Hence, Dex can alleviate inflammation activation on the central nervous system induced by surgical injury.
Animals
;
Dexmedetomidine
;
administration & dosage
;
pharmacology
;
Dose-Response Relationship, Drug
;
Hippocampus
;
metabolism
;
Immunohistochemistry
;
Inflammasomes
;
metabolism
;
Inflammation Mediators
;
metabolism
;
Injections, Intraperitoneal
;
Interleukin-1beta
;
metabolism
;
Laparotomy
;
adverse effects
;
Male
;
Microglia
;
metabolism
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Rats, Sprague-Dawley
;
Time Factors
4.Effect of Gastrodin on Early Brain Injury and Neurological Outcome After Subarachnoid Hemorrhage in Rats.
Xinzhi WANG ; Shuyue LI ; Jinbang MA ; Chuangang WANG ; Anzhong CHEN ; Zhenxue XIN ; Jianjun ZHANG
Neuroscience Bulletin 2019;35(3):461-470
Gastrodin is a phenolic glycoside that has been demonstrated to provide neuroprotection in preclinical models of central nervous system disease, but its effect in subarachnoid hemorrhage (SAH) remains unclear. In this study, we showed that intraperitoneal administration of gastrodin (100 mg/kg per day) significantly attenuated the SAH-induced neurological deficit, brain edema, and increased blood-brain barrier permeability in rats. Meanwhile, gastrodin treatment significantly reduced the SAH-induced elevation of glutamate concentration in the cerebrospinal fluid and the intracellular Ca overload. Moreover, gastrodin suppressed the SAH-induced microglial activation, astrocyte activation, and neuronal apoptosis. Mechanistically, gastrodin significantly reduced the oxidative stress and inflammatory response, up-regulated the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, phospho-Akt and B-cell lymphoma 2, and down-regulated the expression of BCL2-associated X protein and cleaved caspase-3. Our results suggested that the administration of gastrodin provides neuroprotection against early brain injury after experimental SAH.
Animals
;
Apoptosis
;
drug effects
;
Astrocytes
;
drug effects
;
metabolism
;
Benzyl Alcohols
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
metabolism
;
Brain
;
drug effects
;
metabolism
;
Brain Edema
;
etiology
;
prevention & control
;
Calcium
;
metabolism
;
Glucosides
;
administration & dosage
;
Glutamic Acid
;
metabolism
;
Male
;
Microglia
;
drug effects
;
metabolism
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
administration & dosage
;
Oxidative Stress
;
drug effects
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage
;
complications
;
metabolism
;
prevention & control
5.NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction.
Lin XU ; Xiaofei QIU ; Shuo WANG ; Qingshan WANG ; Xiu-Lan ZHAO
Neuroscience Bulletin 2019;35(2):347-361
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Animals
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Cognitive Dysfunction
;
drug therapy
;
metabolism
;
pathology
;
Disease Models, Animal
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Hydrocarbons, Brominated
;
Inflammasomes
;
drug effects
;
metabolism
;
Male
;
Maze Learning
;
drug effects
;
physiology
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Nootropic Agents
;
pharmacology
;
Random Allocation
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
metabolism
;
Spatial Memory
;
drug effects
;
physiology
;
Specific Pathogen-Free Organisms
6.Extract of Fructus Schisandrae chinensis Inhibits Neuroinflammation Mediator Production from Microglia via NF-κ B and MAPK Pathways.
Fang-Jiao SONG ; Ke-Wu ZENG ; Jin-Feng CHEN ; Yuan LI ; Xiao-Min SONG ; Peng-Fei TU ; Xue-Mei WANG
Chinese journal of integrative medicine 2019;25(2):131-138
OBJECTIVE:
To investigate the anti-neuroinflammation effect of extract of Fructus Schisandrae chinensis (EFSC) on lipopolysaccharide (LPS)-induced BV-2 cells and the possible involved mechanisms.
METHODS:
Primary cortical neurons were isolated from embryonic (E17-18) cortices of Institute of Cancer Research (ICR) mouse fetuses. Primary microglia and astroglia were isolated from the frontal cortices of newborn ICR mouse. Different cells were cultured in specific culture medium. Cells were divided into 5 groups: control group, LPS group (treated with 1 μg/mL LPS only) and EFSC groups (treated with 1 μg/mL LPS and 100, 200 or 400 mg/mL EFSC, respectively). The effect of EFSC on cells viability was tested by methylthiazolyldiphenyltetrazolium bromide (MTT) colorimetric assay. EFSC-mediated inhibition of LPS-induced production of pro-inflammatory mediators, such as nitrite oxide (NO) and interleukin-6 (IL-6) were quantified and neuron-protection effect against microglia-mediated inflammation injury was tested by hoechst 33258 apoptosis assay and crystal violet staining assay. The expression of pro-inflammatory marker proteins was evaluated by Western blot analysis or immunofluorescence.
RESULTS:
EFSC (200 and 400 mg/mL) reduced NO, IL-6, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression in LPS-induced BV-2 cells (P<0.01 or P<0.05). EFSC (200 and 400 mg/mL) reduced the expression of NO in LPS-induced primary microglia and astroglia (P<0.01). In addition, EFSC alleviated cell apoptosis and inflammation injury in neurons exposed to microglia-conditioned medium (P<0.01). The mechanistic studies indicated EFSC could suppress nuclear factor (NF)-?B phosphorylation and its nuclear translocation (P<0.01). The anti-inflammatory effect of EFSC occurred through suppressed activation of mitogen-activated protein kinase (MAPK) pathway (P<0.01 or P<0.05).
CONCLUSION
EFSC acted as an anti-inflammatory agent in LPS-induced glia cells. These effects might be realized through blocking of NF-κB activity and inhibition of MAPK signaling pathways.
Animals
;
Astrocytes
;
drug effects
;
metabolism
;
pathology
;
Cell Line
;
Cell Nucleus
;
drug effects
;
metabolism
;
Chromatography, High Pressure Liquid
;
Down-Regulation
;
drug effects
;
Inflammation
;
pathology
;
Inflammation Mediators
;
metabolism
;
Lipopolysaccharides
;
MAP Kinase Signaling System
;
drug effects
;
Mice, Inbred ICR
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NF-kappa B
;
metabolism
;
Nervous System
;
pathology
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Schisandra
;
chemistry
;
Spectrometry, Mass, Electrospray Ionization
7.Effects of cysteinyl leukotriene receptors on phagocytosis of mouse microglial cells.
Xiaorong WANG ; Yunbi LU ; Weiping ZHANG ; Erqing WEI ; Sanhua FANG
Journal of Zhejiang University. Medical sciences 2018;47(1):10-18
OBJECTIVE:
: To determine the effects of cysteinyl leukotriene receptors (CysLTR and CysLTR) on phagocytosis of mouse BV2 microglial cells.
METHODS:
: BV2 cells were stimulated with microglial activators lipopolysaccharide (LPS) or CysLT receptor agonists LTD. The phagocytosis of BV2 cells was observed by immunofluorescence analysis and flow cytometry. The intracellular distributions of CysLTR and CysLTR in BV2 cells were examined with immunofluorescence staining.
RESULTS:
: Both LPS and LTD could significantly enhance the phagocytosis of BV2 cells, and such effect could be inhibited by CysLTR selective antagonist Montelukast and CysLTR selective antagonist HAMI 3379. The activation of BV2 cells induced by LTD or LPS resulted in changes in intracellular distributions of CysLTR and CysLTR. CysLTR and CysLTR was co-localization with a similar distribution.
CONCLUSIONS
: CysLTR and CysLTR regulate the phagocytosis of mouse BV2 microglial cells with a synergistic effect.
Acetates
;
pharmacology
;
Animals
;
Cell Line
;
Cyclohexanecarboxylic Acids
;
pharmacology
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
Microglia
;
cytology
;
Phagocytosis
;
drug effects
;
Phthalic Acids
;
pharmacology
;
Protein Binding
;
drug effects
;
Quinolines
;
pharmacology
;
Receptors, Leukotriene
;
agonists
;
metabolism
8.Effects of estrogen receptor GPR30 agonist G1 on neuronal apoptosis and microglia polarization in traumatic brain injury rats.
Meng-Xian PAN ; Jun-Chun TANG ; Rui LIU ; Yu-Gong FENG ; Qi WAN
Chinese Journal of Traumatology 2018;21(4):224-228
PURPOSETo investigate the effects of estrogen G protein-coupled receptor 30 (GPR30) agonist G1 on hippocampal neuronal apoptosis and microglial polarization in rat traumatic brain injury (TBI).
METHODSMale SD rats were randomly divided into sham group, TBI + vehicle group, TBI + G1 group. Experimental moderate TBI was induced using Feeney's weigh-drop method. G1 (100μg/kg) or vehicle was intravenously injected from femoral vein at 30 min post-injury. Rats were sacrificed at 24 h after injury for detection of neuronal apoptosis and microglia polarization. Neuronal apoptosis was assayed by immunofluorescent staining of active caspase-3. M1 type microglia markers (iNOS and IL-1β) and M2 type markers (Arg1 and IL-4) were examined by immunoblotting or ELISA. Total protein level of Akt and phosphorylated Akt were assayed by immunoblotting.
RESULTSG1 significantly reduced active caspase-3 positive neurons in hippocampus. Meanwhile G1 increased the ratio of Arg1/iNOS. IL-1β production was decreased but IL-4 was increased after G1 treatment. G1 treatment also increased the active form of Akt.
CONCLUSIONSGPR30 agonist G1 inhibited neuronal apoptosis and favored microglia polarization to M2 type.
Animals ; Apoptosis ; drug effects ; Brain Injuries, Traumatic ; drug therapy ; pathology ; Cell Polarity ; Hippocampus ; drug effects ; Interleukin-1beta ; biosynthesis ; Male ; Microglia ; drug effects ; Neurons ; drug effects ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; agonists
9.Protosappanin A exerts anti-neuroinflammatory effect by inhibiting JAK2-STAT3 pathway in lipopolysaccharide-induced BV2 microglia.
Li-Chao WANG ; Li-Xi LIAO ; Ming-Bo ZHAO ; Xin DONG ; Ke-Wu ZENG ; Peng-Fei TU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(9):674-679
Microglial activation and resultant neuroinflammatory response are implicated in various brain diseases including Alzheimer's disease and Parkinson's disease. Treatment with anti-neuroinflammatory agents could provide therapeutic benefits for such disorders. Protosappanin A (PTA) is a major bioactive ingredient isolated from Caesalpinia sappan L.. In this work, the anti-neuroinflammatory effects of PTA on LPS-stimulated BV2 cells were investigated and the underlying mechanisms were explored. Results showed that PTA significantly inhibited the production of TNF-α and IL-1β in LPS-activated BV2 microglia. Moreover, the mRNA expressions of IL-6, IL-1β, and MCP-1 were reduced by PTA in a dose-dependent manner. Furthermore, PTA suppressed JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3, as well as STAT3 nuclear translocation against LPS treatment. These observations suggested a novel role for PTA in regulating LPS-induced neuroinflammatory injuries.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Humans
;
Inflammation
;
drug therapy
;
genetics
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
Microglia
;
drug effects
;
immunology
;
Nitric Oxide
;
genetics
;
immunology
;
Phenols
;
pharmacology
;
STAT3 Transcription Factor
;
genetics
;
immunology
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
10.Effect of Yangxue Qingnao Granule on the Expression of CD11b in CA1 Region of Hippocampus of Vascular Dementia Rats.
Jing LI ; Yuan-yuan MA ; Bin LIU ; Wen-jing MAO ; Jin-xia ZHANG ; Shi-ying LI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):619-623
OBJECTIVETo observe the effect of Yangxue Qingnao Granule (YQG) on the expression of CD11b in CA1 region of hippocampus of vascular dementia rats, and to explore its regulation on microglias.
METHODSTotally 144 SD rats were randomly divided into the sham-operation group, the vascular dementia model group (model), and the YQG treated group (treated). The vascular dementia rat model was prepared by modified Pulsinelli's four-vessel occlusion. Rats in the sham-operation group and the model group were administered with normal saline -(at the daily dose of 10 mL/kg) by gastrogavage, while those in the treated group were administered with YQG (0.32 g/mL, at the daily dose of 10 mL/kg) by gastrogavage. All administration was performed once per day for 8 successive weeks. The expression of CD11b in CA1 region of hippocampus of vascular dementia rats was detected at week 1, 2, 4, and 8, respectively.
RESULTSCompared with the sham-operation group, the expression of CD11b in CA1 region of hippocampus of vascular dementia rats were significantly enhanced in the model group at each time point (P < 0.01). Compared with the model group, the expression of CD11b in CA1 region of hippocampus of vascular dementia rats significantly decreased in the treated group at each time point (P < 0.01), especially at week 2.
CONCLUSIONObvious activation and proliferation of microglias could be seen in CA1 region of hippocampus of vascular dementia rats, and YQG could inhibit activation and proliferation of microglias.
Animals ; CA1 Region, Hippocampal ; drug effects ; metabolism ; CD11b Antigen ; metabolism ; Dementia, Vascular ; drug therapy ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Microglia ; drug effects ; Random Allocation ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail