1.A modified protocol of mouse hippocampal primary microglia culture by using manual dissociation, magnetic activated cell sorting and TIC medium.
Ya-Nan XU ; Li-Jun ZHOU ; Ying-Tao JIE ; Chun-Lin MAI ; Jun ZHANG ; Zhen-Jia LIN ; Zhi TAN
Acta Physiologica Sinica 2019;71(6):883-893
In this study, we improved the culture method of mouse hippocampal primary microglia to obtain hippocampal ramified microglia with high activity and purity, which were resemble to the resting status of normal microglia in healthy brain in vivo. Hippocampal tissue was excised from 2-4-week-old SPF C57BL/6J mice and cut into pieces after PBS perfusion, and then manually dissociated into the single-cell suspension by using Miltenyi Biotec's Adult Brain Dissociation Kit. The tissue fragments such as myelin in the supernatant were removed by debris removal solution in the kit. The cell suspension was incubated with CD11b immunomagnetic beads for 15 min at 4 °C. To obtain high-purity microglia, we used two consecutive cell-sorting steps by magnetic activated cell sorting (MACS). After centrifugation, the cells were resuspended and seeded in a 24-well culture plate. The primary microglia were cultured with complete medium (CM) or TIC medium (a serum-free medium with TGF-β, IL-34 and cholesterol as the main nutritional components) for 4 days, and then were used for further experiments. The results showed that: (1) The cell viability was (56.03 ± 2.10)% by manual dissociation of hippocampus; (2) Compared with immunopanning, two-step MACS sorting allowed for efficient enrichment of microglia with higher purity of (86.20 ± 0.68)%; (3) After being incubated in TIC medium for 4 d, microglia exhibited branching, quiescent morphology; (4) The results from qRT-PCR assay showed that the levels of TNF-α, IL-1β and CCL2 mRNA in TIC cultured-microglia were similar to freshly isolated microglia, while those were much higher in CM cultured-microglia after incubation for 4 d and 7 d (P < 0.05). Taken together, compared to the conventional approaches, this modified protocol of mouse hippocampal primary microglia culture by using MACS and TIC medium enables the increased yield and purity of microglia in the quiescent state, which is similar to normal ramified microglia in healthy brain in vivo.
Animals
;
Cell Culture Techniques
;
methods
;
Cell Separation
;
methods
;
Cells, Cultured
;
Hippocampus
;
Magnetics
;
Mice
;
Mice, Inbred C57BL
;
Microglia
;
cytology
2.Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury.
An-Kai XU ; Zhe GONG ; Yu-Zhe HE ; Kai-Shun XIA ; Hui-Min TAO
Journal of Zhejiang University. Science. B 2019;20(3):205-218
Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
Animals
;
Astrocytes/cytology*
;
Axons/physiology*
;
Cell Transplantation
;
Disease Models, Animal
;
Electric Stimulation
;
Humans
;
Microglia/cytology*
;
Motor Neurons/cytology*
;
Nerve Regeneration
;
Neuroglia/cytology*
;
Neuronal Plasticity
;
Neurons/cytology*
;
Oligodendroglia/cytology*
;
Pyramidal Tracts/pathology*
;
Recovery of Function
;
Regenerative Medicine/methods*
;
Spinal Cord Injuries/therapy*
3.Effects of cysteinyl leukotriene receptors on phagocytosis of mouse microglial cells.
Xiaorong WANG ; Yunbi LU ; Weiping ZHANG ; Erqing WEI ; Sanhua FANG
Journal of Zhejiang University. Medical sciences 2018;47(1):10-18
OBJECTIVE:
: To determine the effects of cysteinyl leukotriene receptors (CysLTR and CysLTR) on phagocytosis of mouse BV2 microglial cells.
METHODS:
: BV2 cells were stimulated with microglial activators lipopolysaccharide (LPS) or CysLT receptor agonists LTD. The phagocytosis of BV2 cells was observed by immunofluorescence analysis and flow cytometry. The intracellular distributions of CysLTR and CysLTR in BV2 cells were examined with immunofluorescence staining.
RESULTS:
: Both LPS and LTD could significantly enhance the phagocytosis of BV2 cells, and such effect could be inhibited by CysLTR selective antagonist Montelukast and CysLTR selective antagonist HAMI 3379. The activation of BV2 cells induced by LTD or LPS resulted in changes in intracellular distributions of CysLTR and CysLTR. CysLTR and CysLTR was co-localization with a similar distribution.
CONCLUSIONS
: CysLTR and CysLTR regulate the phagocytosis of mouse BV2 microglial cells with a synergistic effect.
Acetates
;
pharmacology
;
Animals
;
Cell Line
;
Cyclohexanecarboxylic Acids
;
pharmacology
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
Microglia
;
cytology
;
Phagocytosis
;
drug effects
;
Phthalic Acids
;
pharmacology
;
Protein Binding
;
drug effects
;
Quinolines
;
pharmacology
;
Receptors, Leukotriene
;
agonists
;
metabolism
4.Microglial Phagocytosis in the Neurodegenerative Diseases.
Sheng-nan CAO ; Xiu-qi BAO ; Hua SUN ; Dan ZHANG
Acta Academiae Medicinae Sinicae 2016;38(2):228-233
Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases.
Humans
;
Microglia
;
cytology
;
Neurodegenerative Diseases
;
physiopathology
;
Phagocytosis
5.Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia.
Jintao BAO ; Liangjun ZHENG ; Qi ZHANG ; Xinya LI ; Xuefei ZHANG ; Zeyang LI ; Xue BAI ; Zhong ZHANG ; Wei HUO ; Xuyang ZHAO ; Shujiang SHANG ; Qingsong WANG ; Chen ZHANG ; Jianguo JI
Protein & Cell 2016;7(6):417-433
Microglia play a pivotal role in clearance of Aβ by degrading them in lysosomes, countering amyloid plaque pathogenesis in Alzheimer's disease (AD). Recent evidence suggests that lysosomal dysfunction leads to insufficient elimination of toxic protein aggregates. We tested whether enhancing lysosomal function with transcription factor EB (TFEB), an essential regulator modulating lysosomal pathways, would promote Aβ clearance in microglia. Here we show that microglial expression of TFEB facilitates fibrillar Aβ (fAβ) degradation and reduces deposited amyloid plaques, which are further enhanced by deacetylation of TFEB. Using mass spectrometry analysis, we firstly confirmed acetylation as a previously unreported modification of TFEB and found that SIRT1 directly interacted with and deacetylated TFEB at lysine residue 116. Subsequently, SIRT1 overexpression enhanced lysosomal function and fAβ degradation by upregulating transcriptional levels of TFEB downstream targets, which could be inhibited when TFEB was knocked down. Furthermore, overexpression of deacetylated TFEB at K116R mutant in microglia accelerated intracellular fAβ degradation by stimulating lysosomal biogenesis and greatly reduced the deposited amyloid plaques in the brain slices of APP/PS1 transgenic mice. Our findings reveal that deacetylation of TFEB could regulate lysosomal biogenesis and fAβ degradation, making microglial activation of TFEB a possible strategy for attenuating amyloid plaque deposition in AD.
Alzheimer Disease
;
metabolism
;
pathology
;
Amyloid beta-Peptides
;
metabolism
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
chemistry
;
genetics
;
metabolism
;
Brain
;
metabolism
;
Cells, Cultured
;
Chloride Channels
;
genetics
;
metabolism
;
Disease Models, Animal
;
HEK293 Cells
;
Humans
;
Lysosomes
;
genetics
;
metabolism
;
Mice
;
Mice, Transgenic
;
Microglia
;
cytology
;
metabolism
;
Mutagenesis, Site-Directed
;
Peptides
;
analysis
;
chemistry
;
Protein Binding
;
RNA Interference
;
Sirtuin 1
;
antagonists & inhibitors
;
genetics
;
metabolism
6.Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.
Sun Young PARK ; Young Hun KIM ; Geuntae PARK
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):343-353
Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent.
Anti-Inflammatory Agents
;
pharmacology
;
Cell Line
;
Heme Oxygenase-1
;
genetics
;
immunology
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Microglia
;
cytology
;
drug effects
;
immunology
;
Mitogen-Activated Protein Kinases
;
genetics
;
immunology
;
NF-kappa B
;
genetics
;
immunology
;
Nardostachys
;
chemistry
;
Neuroprotective Agents
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Teichoic Acids
;
adverse effects
7.Activation of microglia and astrocytes in different spinal segments after peripheral nerve injury in mice.
Nian LIU ; Kai-Kai ZANG ; Yu-Qiu ZHANG
Acta Physiologica Sinica 2015;67(6):571-582
Spinal microglia and astrocytes play an important role in mediating behavioral hypersensitive state following peripheral nerve injury. However, little is known about the expression patterns of activated microglia and astrocytes in the spinal dorsal horn. The aim of the present study was to investigate the spatial distribution of microglial and astrocytic activation in cervical, thoracic, lumbar and sacral segments of spinal dorsal horn following chronic constriction injury (CCI) of sciatic nerve. The hind paw withdrawal threshold (PWT) of wild type (WT), CX3CR1(YFP) and GFAP(YFP) transgenic mice to mechanical stimulation was determined by von Frey test. Immunofluorescence staining was used to examine the spatial distribution of microglial and astrocytic activation in the spinal dorsal horn. Following CCI, all the WT, CX3CR1(YFP) and GFAP(YFP) mice developed robust allodynia in the ipsilateral paw on day 3 after CCI, and the allodynia was observed to last for 14 days. In comparison with sham groups, the PWTs of CCI group animals were significantly decreased (P < 0.01, n = 6). On day 14 after CCI, CX3CR1(YFP)-GFP immunofluorescence intensity was significantly increased in the ipsilateral lumbar spinal dorsal horn of the CX3CR1(YFP) mice (P < 0.01, n = 6), but no detectable changes were observed in other spinal segments. Increased GFAP(YFP)-GFP immunofluorescence intensity was observed in the ipsilateral thoracic, lumbar and sacral spinal segments of the GFAP(YFP) mice on day 14 after CCI. Iba-1 and GFAP immunofluorescence staining in WT mice showed the same result of microglia and astrocyte activation on day 14 after CCI. CX3CR1(YFP)-GFP and GFAP(YFP)-GFP immunofluorescence signal was colocalized with microglial marker Iba-1 and astrocytic marker GFAP, respectively. Interestingly, on day 3 after CCI, Iba-1-immunoreactivity was significantly increased in the ipsilateral thoracic, lumbar and sacral spinal segments of WT mice, whereas the significant upregulation of GFAP-immunoreactivity restrictedly occurred in the ipsilateral lumbar spinal segment. These results suggest that microglial and astrocytic activation may be involved in the development and maintenance of secondary allodynia in mice with neuropathic pain.
Animals
;
Astrocytes
;
physiology
;
Disease Models, Animal
;
Hyperalgesia
;
Mice
;
Mice, Transgenic
;
Microglia
;
physiology
;
Neuralgia
;
Peripheral Nerve Injuries
;
Sciatic Nerve
;
injuries
;
Spinal Cord Dorsal Horn
;
cytology
;
Up-Regulation
8.Minocycline attenuates microglial response and reduces neuronal death after cardiac arrest and cardiopulmonary resuscitation in mice.
Qian-yan WANG ; Peng SUN ; Qing ZHANG ; Shang-long YAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(2):225-229
The possible role of minocycline in microglial activation and neuronal death after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) in mice was investigated in this study. The mice were given potassium chloride to stop the heart beating for 8 min to achieve CA, and they were subsequently resuscitated with epinephrine and chest compressions. Forty adult C57BL/6 male mice were divided into 4 groups (n=10 each): sham-operated group, CA/CPR group, CA/CPR+minocycline group, and CA/CPR+vehicle group. Animals in the latter two groups were intraperitoneally injected with minocycline (50 mg/kg) or vehicle (normal saline) 30 min after recovery of spontaneous circulation (ROSC). Twenty-four h after CA/CPR, the brains were removed for histological evaluation of the hippocampus. Microglial activation was evaluated by detecting the expression of ionized calcium-binding adapter molecule-1 (Iba1) by immunohistochemistry. Neuronal death was analyzed by hematoxylin and eosin (H&E) staining and the levels of tumor necrosis factor-alpha (TNF-α) in the hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The results showed that the neuronal death was aggravated, most microglia were activated and TNF-α levels were enhanced in the hippocampus CA1 region of mice subjected to CA/CPR as compared with those in the sham-operated group (P<0.05). Administration with minocycline 30 min after ROSC could significantly decrease the microglial response, TNF-α levels and neuronal death (P<0.05). It was concluded that early administration with minocycline has a strong therapeutic potential for CA/CPR-induced brain injury.
Animals
;
Cardiopulmonary Resuscitation
;
Cell Death
;
drug effects
;
Enzyme-Linked Immunosorbent Assay
;
Heart Arrest
;
pathology
;
Hippocampus
;
cytology
;
drug effects
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Microglia
;
cytology
;
drug effects
;
Minocycline
;
pharmacology
;
Neurons
;
drug effects
;
Tumor Necrosis Factor-alpha
;
metabolism
9.Zileuton, a 5-lipoxygenase inhibitor, attenuates mouse microglial cell-mediated rotenone toxicity in PC12 cells.
Xiao-yan ZHANG ; Lu CHEN ; Dong-min XU ; Xiao-rong WANG ; Yan-fang WANG ; Cheng-tan LI ; Er-qing WEI ; Li-hui ZHANG
Journal of Zhejiang University. Medical sciences 2014;43(3):273-280
OBJECTIVETo examine the effect of a selective inhibitor of 5-lipoxygenase (5-LOX) zileuton on microglia-mediated rotenone neurotoxicity.
METHODSThe supernatant from different concentrations of rotenone-stimulated mouse microglia BV2 cells was used as the conditioned media (CM) for PC12 cells. The viability of PC12 cells was determined by MTT assay and lactate dehydrogenase (LDH) release. Cell death was observed by LDH release and double fluorescence staining with Hoechst/propidiumiodide (PI). The effect of zileuton on microglia-mediated rotenone toxicity was evaluated by the above methods.
RESULTSRotenone at 1-10 nmol/L was nontoxic to PC12 cells directly. However, the CM from BV2 cells that were treated with rotenone (1-10 nmol/L) resulted in toxicity of PC12 cells. The BV2 CM which stimulated with rotenone (1-10 nmol/L) induced morphological changes, reduced cell viability, and increased LDH release and cell necrosis in PC12 cells. Pretreatment of BV2 cells with the 5-LOX inhibitor zileuton (0.01-1 μmol/L) protected PC12 cells from the microglia-mediated rotenone toxicity.
CONCLUSIONThe 5-LOX inhibitor zileuton effectively attenuates microglia-mediated rotenone toxicity in PC12 cells. These results suggest that 5-LOX pathway may be involved in neuronal death induced by microglial inflammation.
Animals ; Cell Death ; drug effects ; Cells, Cultured ; Hydroxyurea ; analogs & derivatives ; pharmacology ; Lipoxygenase Inhibitors ; pharmacology ; Mice ; Microglia ; cytology ; PC12 Cells ; Rats ; Rotenone ; toxicity

Result Analysis
Print
Save
E-mail