1.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
		                        		
		                        			OBJECTIVE:
		                        			To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
		                        		
		                        			METHODS:
		                        			Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
		                        		
		                        			RESULTS:
		                        			TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
		                        		
		                        			CONCLUSIONS
		                        			TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			Psoriasis/drug therapy*
		                        			;
		                        		
		                        			Keratinocytes
		                        			;
		                        		
		                        			Skin Diseases/metabolism*
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Imiquimod/metabolism*
		                        			;
		                        		
		                        			Dermatitis/pathology*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Skin/metabolism*
		                        			
		                        		
		                        	
2.Tongxie Yaofang regulates tumor-associated macrophage polarization in colorectal cancer under chronic stress.
Yi YANG ; Yan-E HU ; Yu-Qing HUANG ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(22):6142-6153
		                        		
		                        			
		                        			This study aims to investigate the intervention effect and mechanism of Tongxie Yaofang in regulating tumor-associated macrophage polarization on colorectal cancer under chronic stress. BALB/C mice were randomized into blank, control, model, mifepristone, and low-, medium-, and high-dose Tongxie Yaofang groups. The other groups except the blank and model groups were subjected to chronic restraint stress and subcutaneous implantation of colon cancer cells for the modeling of colon cancer under stress. Du-ring this period, the body mass and tumor size of each group of mice were recorded. The degree of depression in mice was assessed by behavioral changes. Enzyme-linked immunosorbent assay was employed to determine the levels of cortisol(CORT), 5-hydroxytryptamine(5-HT), norepinephrine(NE), M1-associated inflammatory cytokines [interleukin(IL)-1β, IL-12, and tumor necrosis factor(TNF)-α], and M2-associated inflammatory cytokines(IL-4 and IL-10) in the serum. The tumor growth of mice in each group was regularly monitored by in vivo imaging. The histopathological changes of tumors in each group of mice were observed by hematoxylin-eosin staining. The proportions of CD86 and CD206 in the tumor tissue were detected by flow cytometry and immunofluorescence staining. Western blot was employed to determine the protein levels of Janus kinase(JAK)1, JAK2, JAK3, signal transducer and activator of transcription(STAT)3, and STAT6 in the tumor tissue. The results showed that chronic stress increased the immobility time of mice, elevated the serum levels of CORT, IL-4, and IL-10, lowered the levels of 5-HT, NE, IL-1β, IL-12, and TNF-α, and promoted the growth of subcutaneous tumors. The tumor cells in the tumor tissue grew actively, with obvious atypia and up-regulated protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and down-regulated protein level of CD86. The treatment with Tongxie Yaofang shortened the immobility time of mice, lowered the serum levels of CORT, IL-4, and IL-10, elevated the serum levels of 5-HT, NE, IL-1β, IL-12, and TNF-α, and inhibited the growth of subcutaneous tumors in mice. Moreover, the treatment caused different degrees of necrosis in the tumor tissues, down-regulated the protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and up-regulated the protein level of CD86. In summary, Tongxie Yaofang can promote the transformation of M2 macrophages to M1 macrophages and change the tumor microenvironment under chronic stress to inhibit the development of colorectal cancer, which may be related to the JAK/STAT signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Interleukin-10
		                        			;
		                        		
		                        			Tumor-Associated Macrophages/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			Interleukin-4
		                        			;
		                        		
		                        			Serotonin
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Interleukin-12
		                        			;
		                        		
		                        			Colonic Neoplasms
		                        			;
		                        		
		                        			Colorectal Neoplasms
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			
		                        		
		                        	
3.Improvement effect of Shegan Mahuang Decoction on rats with cold-induced asthma based on TRPV1/NRF-1/mtTFA pathway.
Qiu-Hui LI ; Xiao-Xiao SHAN ; Xiao-Ying LIU ; Wei-Dong YE ; Ya-Mei YUAN ; Xun-Yan YIN ; Xiang-Ming FANG
China Journal of Chinese Materia Medica 2023;48(23):6414-6422
		                        		
		                        			
		                        			This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Interleukin-4/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Asthma/genetics*
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			Bronchoalveolar Lavage Fluid
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Collagen/metabolism*
		                        			;
		                        		
		                        			Mucins/therapeutic use*
		                        			;
		                        		
		                        			Ovalbumin
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			TRPV Cation Channels/metabolism*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			
		                        		
		                        	
4.Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9.
Ya ZHONG ; Bo-Wen ZHANG ; Jin-Tao LI ; Xin ZENG ; Jun-Xia PEI ; Ya-Mei ZHANG ; Yi-Xi YANG ; Fu-Lun LI ; Yu DENG ; Qi ZHAO
Journal of Integrative Medicine 2023;21(6):584-592
		                        		
		                        			OBJECTIVE:
		                        			To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation.
		                        		
		                        			METHODS:
		                        			Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9.
		                        		
		                        			RESULTS:
		                        			EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry.
		                        		
		                        			CONCLUSION
		                        			Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Interleukin-17/metabolism*
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			Imiquimod/adverse effects*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Psoriasis/chemically induced*
		                        			;
		                        		
		                        			Keratinocytes
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Chemokines/metabolism*
		                        			;
		                        		
		                        			Interferon-gamma/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			
		                        		
		                        	
5.Ozonated oil alleviates dinitrochlorobenzene-induced allergic contact dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Zhibing FU ; Yajie XIE ; Liyue ZENG ; Lihua GAO ; Xiaochun YU ; Lina TAN ; Lu ZHOU ; Jinrong ZENG ; Jianyun LU
Journal of Central South University(Medical Sciences) 2023;48(1):1-14
		                        		
		                        			OBJECTIVES:
		                        			Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms.
		                        		
		                        			METHODS:
		                        			Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions.
		                        		
		                        			RESULTS:
		                        			Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1β, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1β, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05).
		                        		
		                        			CONCLUSIONS
		                        			Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Dinitrochlorobenzene/metabolism*
		                        			;
		                        		
		                        			Skin/metabolism*
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Interleukin-17/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Dermatitis, Allergic Contact/pathology*
		                        			;
		                        		
		                        			Dermatitis, Atopic/chemically induced*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			
		                        		
		                        	
6.Changes in percentage of GATA3+ regulatory T cells and their pathogenic roles in allergic rhinitis.
Liu SUN ; Wo Er JIAO ; Yong Kong KONG ; Chang Liang YANG ; Shan XU ; Yue Long QIAO ; Shi Ming CHEN
Journal of Southern Medical University 2023;43(2):280-286
		                        		
		                        			OBJECTIVE:
		                        			To investigate the changes in percentage of GATA3+ regulatory T (Treg) cells in patients with allergic rhinitis (AR) and mouse models.
		                        		
		                        			METHODS:
		                        			The nasal mucosa specimens were obtained from 6 AR patients and 6 control patients for detection of nasal mucosal inflammation. Peripheral blood mononuclear cells (PBMC) were collected from 12 AP patients and 12 control patients to determine the percentages of Treg cells and GATA3+ Treg cells. In a C57BL/6 mouse model of AR, the AR symptom score, peripheral blood OVA-sIgE level, and nasal mucosal inflammation were assessed, and the spleen of mice was collected for detecting the percentages of Treg cells and GATA3+ Treg cells and the expressions of Th2 cytokines.
		                        		
		                        			RESULTS:
		                        			Compared with the control patients, AR patients showed significantly increased eosinophil infiltration and goblet cell proliferation in the nasal mucosa (P < 0.01) and decreased percentages of Treg cells and GATA3+ Treg cells (P < 0.05). The mouse models of AR also had more obvious allergic symptoms, significantly increased OVA-sIgE level in peripheral blood, eosinophil infiltration and goblet cell hyperplasia (P < 0.01), markedly lowered percentages of Treg cells and GATA3+ Treg cells in the spleen (P < 0.01), and increased expressions of IL-4, IL-6 and IL-10 (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			The percentage of GATA3+ Treg cells is decreased in AR patients and mouse models. GATA3+ Treg cells possibly participate in Th2 cell immune response, both of which are involved in the occurrence and progression of AR, suggesting the potential of GATA3+ Treg cells as a new therapeutic target for AR.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			GATA3 Transcription Factor
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Leukocytes, Mononuclear/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Nasal Mucosa/metabolism*
		                        			;
		                        		
		                        			Ovalbumin
		                        			;
		                        		
		                        			Rhinitis, Allergic/therapy*
		                        			;
		                        		
		                        			T-Lymphocytes, Regulatory
		                        			;
		                        		
		                        			Th2 Cells/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			
		                        		
		                        	
7.Lactate promotes HMGB1 phosphorylation and release via Akt signaling pathway in gastric cancer cells HGC-27.
Xue Lei CHEN ; Fei GE ; Meng Qi WAN ; Shi Mei QI ; Zhi Lin QI
Chinese Journal of Oncology 2023;45(11):919-925
		                        		
		                        			
		                        			Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Stomach Neoplasms/pathology*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			HMGB1 Protein/metabolism*
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Lactic Acid
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
8.Lactate promotes HMGB1 phosphorylation and release via Akt signaling pathway in gastric cancer cells HGC-27.
Xue Lei CHEN ; Fei GE ; Meng Qi WAN ; Shi Mei QI ; Zhi Lin QI
Chinese Journal of Oncology 2023;45(11):919-925
		                        		
		                        			
		                        			Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Stomach Neoplasms/pathology*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			HMGB1 Protein/metabolism*
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Lactic Acid
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
9.Study on the Protective effect and mechanism of Nicotinamide Riboside on lung injury in paraquat intoxicated mice.
Xing Ken FAN ; Chang Qin XU ; Kai Qiang CAO ; Guang Ju ZHAO ; Guang Liang HONG ; Zhong Qiu LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):561-567
		                        		
		                        			
		                        			Objective: To investigate the protective effect and mechanism of Nicotinamide Riboside (NR) on lung injury caused by Paraquat intoxicated mice. Methods: Eighty clean male BALB/C mice were selected and averagely divided forty mice into 4 groups with 10 mice in each group, PQ group was given 25% PQ solution (60 mg/kg) by one-time gavage. PQ+NR group were intraperitoneally injected with NR solution (300 mg/kg) 1 hour before given the same amount of PQ solution (60 mg/kg) by one-time gavage, The Control group were given the same amount of saline by one-time gavage, The same amount of NR was intraperitoneally injected before NR group were given saline by one-time gavage. Observed and recorded general condition of PQ intoxicated mice. Observed and recorded the death of mice every half an hour and counted the mortality and drew survival curve of each group after 72 hours exposure. another forty mice were averagely divided and treated by the same way. After 24 hours of modelling, mice were anaesthetized and killed. Then blood was extracted after eyeball was removed. The changes of TNF-a、IL-6 and MPO in serum of mice were detected by ELISA.Two lung tissues were removed from the chest and used to measure the D/W ratio of the lung. The pathological changes of lung were observed and scored under light microscope.The levels of SOD, MDA and Caspase-3 in lung tissues were determined by chemical colorimetry. The expression of Sirt1 and Nrf2 in lung tissues was detected by Western-blot. Results: Compared with the Control group and the NR group, the mice in the PQ group had a poor general condition, such as depression, crouching, skin disorder and reduced activity, food, urine and feces. The symptoms in the PQ+NR group were reduced compared with the PQ group. The survival rate at 72 hours after exposure: 80% in the PQ+NR group and 40% higher than that in the PQ group (P=0.029) . Compared with Control group and NR group, the D/W ratio (0.09±0.07) , lung pathology score under light microscope (11.80±0.37) , TNF-a (39.89±1.48) pg/ml、IL-6 (77.29±2.38) pg/ml、MPO (0.31±0.01) μg/ml、SOD (6.62±0.30) U/mgprot、MDA level (1.21±0.14) mmol/mgprot, Caspase-3 activity (356.00± 27.16) %, Sirt1 and Nrf2 protein expression (1.02±0.14、0.82±0.06) were significantly decreased in PQ group (P=0.004、0.023) ; Compared with PQ group, PQ+NR group significantly increased the D/W ratio (0.10±0.10) , decreased the pulmonary pathology score under light microscope (7.400.51) , decreased TNF-a (33.00± 0.65) pg/ml、IL-6 (52.23±4.23) pg/ml、MPO leve (0.23±0.01) μg/mll, increased SOD leve (9.28±0.45) U/mgprotl, decreased MDA level (0.78±0.02) mmol/mgprot, decreased Caspase-3 activity (222.80±7.59) %, and increased the protein expressions of Sirt1 and Nrf2 (1.62±0.16、1.06±0.04) (P=0.048、0.035) . Conclusion: NR can prolong the survival time of PQ poisoned mice; NR intervention can effectively inhibit the inflammatory response, peroxidation injury and apoptosis of PQ poisoned mice; NR intervention can upregulate the expression of Sirt1 and Nrf2 protein and effectively reduce the lung injury of PQ poisoning.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Caspase 3/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			Lung Injury/metabolism*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Niacinamide/pharmacology*
		                        			;
		                        		
		                        			Paraquat/toxicity*
		                        			;
		                        		
		                        			Pyridinium Compounds/pharmacology*
		                        			;
		                        		
		                        			Sirtuin 1/metabolism*
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			
		                        		
		                        	
10.Numb activates the mTORC1 signaling pathway in proximal tubular epithelial cells by upregulating V1G1 expression.
Ze LIU ; Da YOU ; Yong LI ; Yong Mei HE ; A Fang LI ; Pan LI ; Chun Yan LI
Journal of Southern Medical University 2022;42(10):1462-1469
		                        		
		                        			OBJECTIVE:
		                        			To investigate the role of Numb in regulating mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway.
		                        		
		                        			METHODS:
		                        			Male BALB/C mouse models of acute kidney injury (AKI) were subjected to intravenous injections of Numb-siRNA or NC-siRNA with or without intraperitoneal cisplatin injections. After the treatments, the expressions and distribution of Numb and megalin in the renal tissues of the mice were detected with immunohistochemistry, and the renal expressions of Numb, S6, p-S6, S6K1, p-S6K1, 4EBP1 and p-4EBP1 were examined with Western blotting. The proximal renal tubular epithelial cells were isolated from the mice transfected with Numb-siRNA for in vitro culture. In NRK-52E cells, the effects of amino acid stimulation, Numb knockdown, and V1G1 overexpression, alone or in combination, on expressions of Numb, S6 and p-S6 were detected with Western blotting; the expressions of AMPK and p-AMPK were also detected in transfected NRK-52E cells, mouse kidneys and cultured mouse renal tubular epithelial cells.
		                        		
		                        			RESULTS:
		                        			In BALB/C mice, injection of Numb-siRNA caused significant reductions of Numb and p-S6 expressions without affecting megalin expression in the renal proximal tubules (P < 0.05). Cisplatin treatment obviously upregulated p-S6K1 and p-4EBP1 expressions in the kidneys of the mice (P < 0.05), and this effect was significantly inhibited by treatment with Numb-siRNA (P < 0.05). In NRK-52E cells, amino acid stimulation significantly upregulated the expression of p-S6 (P < 0.05), which was strongly suppressed by transfection with Numb-siRNA (P < 0.05). Numb knockdown inhibited AMPK activation in NRK-52E cells, mouse kidneys and primary proximal tubular epithelial cells (P < 0.05). Numb knockdown significantly downregulated V1G1 expression in NRK-52E cells (P < 0.05), and V1G1 overexpression obviously reversed the inhibitory effect of Numb-siRNA on S6 phosphorylation (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Numb promotes the activation of mTORC1 signaling in proximal tubular epithelial cells by upregulating V1G1 expression.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Amino Acids/pharmacology*
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			Cisplatin/pharmacology*
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			Low Density Lipoprotein Receptor-Related Protein-2/metabolism*
		                        			;
		                        		
		                        			Mammals/metabolism*
		                        			;
		                        		
		                        			Mechanistic Target of Rapamycin Complex 1/metabolism*
		                        			;
		                        		
		                        			Membrane Proteins/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Nerve Tissue Proteins/metabolism*
		                        			;
		                        		
		                        			RNA, Small Interfering/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Vacuolar Proton-Translocating ATPases/metabolism*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail