1.Minocycline Susceptibility of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates from a Single Center in Korea: Role of tetB in Resistance
Taeeun KIM ; Eun Hee JEON ; Yoon-Kyoung HONG ; Jiwon JUNG ; Min Jae KIM ; Heungsup SUNG ; Mi-Na KIM ; Sung-Han KIM ; Sang-Ho CHOI ; Sang-Oh LEE ; Yang Soo KIM ; Yong Pil CHONG
Infection and Chemotherapy 2025;57(1):111-118
		                        		
		                        			 Background:
		                        			Carbapenem-resistant Acinetobacter baumannii (CRAB) represents a devastating and growing global threat, calling for new antibiotic treatments. In Korea, the challenge of treating CRAB is compounded by high nosocomial acquisition rates and limited availability of novel antibiotics. Minocycline, a semisynthetic tetracycline derivative, has been proposed as a therapeutic option for CRAB infections. Nonsusceptibility to minocycline may occur through the efflux pump, TetB. The prevalence of tetB in A. baumannii has increased, along with higher minocycline minimum inhibitory concentrations (MICs). We aimed to evaluate minocycline susceptibility rates in clinical strains of CRAB, and the association between tetB carriage and minocycline susceptibility across different genotypes. 
		                        		
		                        			Materials and Methods:
		                        			Representative CRAB blood isolates were collected from Asan Medical Center, Seoul.Minocycline susceptibility was assessed using the Clinical and Laboratory Standards Institute (CLSI) breakpoint (≤4 mg/L) and the proposed pharmacokinetics (PK)/pharmacodynamics (PD) breakpoint (≤1 mg/L). Tigecycline was used as a comparator, and its susceptibility breakpoint for Enterobacterales defined by EUCAST was applied (≤0.5 mg/L).The presence of tetB was detected by PCR, and multilocus sequence typing (MLST) was performed using seven housekeeping genes. 
		                        		
		                        			Results:
		                        			Of the 160 CRAB blood isolates, 83.8% were susceptible to minocycline by the CLSI criteria, and 50.6% were PK-PD susceptible by the PK-PD criteria. The minocycline minimum inhibitory concentration (MIC)50 /MIC90 was 1/8 mg/L. tetB was present in 49% of isolates and was associated with a higher minocycline MIC (MIC50/90 2/8 mg/L vs. 1/2 mg/L). No clear correlation was observed between tetB positivity and tigecycline MIC. Nine MLSTs were identified, with significant differences in tetB carriage rates between the major sequence types. Notably, ST191, associated with non-tetB carriage and greater susceptibility to minocycline, declined over the study period (P=0.004), while ST451, associated with tetB carriage, increased. 
		                        		
		                        			Conclusion
		                        			tetB was present in 49% of CRAB isolates and was associated with higher MICs and non-susceptibility by both CLSI and PK-PD criteria. However, absence of tetB was not a reliable predictor of minocycline PK-PD susceptibility. Additionally, shifts over time towards genotypes with reduced minocycline susceptibility were observed. Further research is needed to correlate these findings with clinical outcomes and identify additional resistance mechanisms. 
		                        		
		                        		
		                        		
		                        	
2.Minocycline Susceptibility of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates from a Single Center in Korea: Role of tetB in Resistance
Taeeun KIM ; Eun Hee JEON ; Yoon-Kyoung HONG ; Jiwon JUNG ; Min Jae KIM ; Heungsup SUNG ; Mi-Na KIM ; Sung-Han KIM ; Sang-Ho CHOI ; Sang-Oh LEE ; Yang Soo KIM ; Yong Pil CHONG
Infection and Chemotherapy 2025;57(1):111-118
		                        		
		                        			 Background:
		                        			Carbapenem-resistant Acinetobacter baumannii (CRAB) represents a devastating and growing global threat, calling for new antibiotic treatments. In Korea, the challenge of treating CRAB is compounded by high nosocomial acquisition rates and limited availability of novel antibiotics. Minocycline, a semisynthetic tetracycline derivative, has been proposed as a therapeutic option for CRAB infections. Nonsusceptibility to minocycline may occur through the efflux pump, TetB. The prevalence of tetB in A. baumannii has increased, along with higher minocycline minimum inhibitory concentrations (MICs). We aimed to evaluate minocycline susceptibility rates in clinical strains of CRAB, and the association between tetB carriage and minocycline susceptibility across different genotypes. 
		                        		
		                        			Materials and Methods:
		                        			Representative CRAB blood isolates were collected from Asan Medical Center, Seoul.Minocycline susceptibility was assessed using the Clinical and Laboratory Standards Institute (CLSI) breakpoint (≤4 mg/L) and the proposed pharmacokinetics (PK)/pharmacodynamics (PD) breakpoint (≤1 mg/L). Tigecycline was used as a comparator, and its susceptibility breakpoint for Enterobacterales defined by EUCAST was applied (≤0.5 mg/L).The presence of tetB was detected by PCR, and multilocus sequence typing (MLST) was performed using seven housekeeping genes. 
		                        		
		                        			Results:
		                        			Of the 160 CRAB blood isolates, 83.8% were susceptible to minocycline by the CLSI criteria, and 50.6% were PK-PD susceptible by the PK-PD criteria. The minocycline minimum inhibitory concentration (MIC)50 /MIC90 was 1/8 mg/L. tetB was present in 49% of isolates and was associated with a higher minocycline MIC (MIC50/90 2/8 mg/L vs. 1/2 mg/L). No clear correlation was observed between tetB positivity and tigecycline MIC. Nine MLSTs were identified, with significant differences in tetB carriage rates between the major sequence types. Notably, ST191, associated with non-tetB carriage and greater susceptibility to minocycline, declined over the study period (P=0.004), while ST451, associated with tetB carriage, increased. 
		                        		
		                        			Conclusion
		                        			tetB was present in 49% of CRAB isolates and was associated with higher MICs and non-susceptibility by both CLSI and PK-PD criteria. However, absence of tetB was not a reliable predictor of minocycline PK-PD susceptibility. Additionally, shifts over time towards genotypes with reduced minocycline susceptibility were observed. Further research is needed to correlate these findings with clinical outcomes and identify additional resistance mechanisms. 
		                        		
		                        		
		                        		
		                        	
3.Minocycline Susceptibility of Carbapenem-Resistant Acinetobacter baumannii Blood Isolates from a Single Center in Korea: Role of tetB in Resistance
Taeeun KIM ; Eun Hee JEON ; Yoon-Kyoung HONG ; Jiwon JUNG ; Min Jae KIM ; Heungsup SUNG ; Mi-Na KIM ; Sung-Han KIM ; Sang-Ho CHOI ; Sang-Oh LEE ; Yang Soo KIM ; Yong Pil CHONG
Infection and Chemotherapy 2025;57(1):111-118
		                        		
		                        			 Background:
		                        			Carbapenem-resistant Acinetobacter baumannii (CRAB) represents a devastating and growing global threat, calling for new antibiotic treatments. In Korea, the challenge of treating CRAB is compounded by high nosocomial acquisition rates and limited availability of novel antibiotics. Minocycline, a semisynthetic tetracycline derivative, has been proposed as a therapeutic option for CRAB infections. Nonsusceptibility to minocycline may occur through the efflux pump, TetB. The prevalence of tetB in A. baumannii has increased, along with higher minocycline minimum inhibitory concentrations (MICs). We aimed to evaluate minocycline susceptibility rates in clinical strains of CRAB, and the association between tetB carriage and minocycline susceptibility across different genotypes. 
		                        		
		                        			Materials and Methods:
		                        			Representative CRAB blood isolates were collected from Asan Medical Center, Seoul.Minocycline susceptibility was assessed using the Clinical and Laboratory Standards Institute (CLSI) breakpoint (≤4 mg/L) and the proposed pharmacokinetics (PK)/pharmacodynamics (PD) breakpoint (≤1 mg/L). Tigecycline was used as a comparator, and its susceptibility breakpoint for Enterobacterales defined by EUCAST was applied (≤0.5 mg/L).The presence of tetB was detected by PCR, and multilocus sequence typing (MLST) was performed using seven housekeeping genes. 
		                        		
		                        			Results:
		                        			Of the 160 CRAB blood isolates, 83.8% were susceptible to minocycline by the CLSI criteria, and 50.6% were PK-PD susceptible by the PK-PD criteria. The minocycline minimum inhibitory concentration (MIC)50 /MIC90 was 1/8 mg/L. tetB was present in 49% of isolates and was associated with a higher minocycline MIC (MIC50/90 2/8 mg/L vs. 1/2 mg/L). No clear correlation was observed between tetB positivity and tigecycline MIC. Nine MLSTs were identified, with significant differences in tetB carriage rates between the major sequence types. Notably, ST191, associated with non-tetB carriage and greater susceptibility to minocycline, declined over the study period (P=0.004), while ST451, associated with tetB carriage, increased. 
		                        		
		                        			Conclusion
		                        			tetB was present in 49% of CRAB isolates and was associated with higher MICs and non-susceptibility by both CLSI and PK-PD criteria. However, absence of tetB was not a reliable predictor of minocycline PK-PD susceptibility. Additionally, shifts over time towards genotypes with reduced minocycline susceptibility were observed. Further research is needed to correlate these findings with clinical outcomes and identify additional resistance mechanisms. 
		                        		
		                        		
		                        		
		                        	
4.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
5.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
6.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
7.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
8.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
		                        		
		                        			 Purpose:
		                        			We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data. 
		                        		
		                        			Materials and Methods:
		                        			The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type. 
		                        		
		                        			Results:
		                        			Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite. 
		                        		
		                        			Conclusion
		                        			Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment. 
		                        		
		                        		
		                        		
		                        	
9.Update of systemic treatments in severe/recalcitrant atopic dermatitis:Consensus document of the KAAACI working group on atopic dermatitis
Myongsoon SUNG ; Young-Il KOH ; Mi-Ae KIM ; Hyunjung KIM ; Jung Im NA ; Dong-Ho NAHM ; Taek Ki MIN ; Yang PARK ; Dong Hun LEE ; Mi-Hee LEE ; So-Yeon LEE ; Youngsoo LEE ; Chong Hyun WON ; Hye Yung YUM ; Mira CHOI ; Eung Ho CHOI ; Woo Kyung KIM ;
Allergy, Asthma & Respiratory Disease 2024;12(2):58-71
		                        		
		                        			
		                        			 Atopic dermatitis (AD) is the most prevalent inflammatory skin condition, with approximately 80% of cases originating in childhood and some emerging in adulthood. In South Korea, the estimated prevalence of AD ranges between 10% and 20% in children and 1% and 3% in adults. Severe/recalcitrant AD manifests as a chronic, relapsing skin disorder, persisting with uncontrolled symptoms even after topical steroid treatment. Corticosteroids and systemic immunosuppression, conventionally the standard care for difficult-to-treat diseases, cause numerous undesirable side effects. When AD persists despite topical steroid application, systemic therapies like cyclosporine or systemic steroids become the second treatment strategy. The desire for targeted treatments, along with an enhanced understanding of AD’s pathophysiology, has spurred novel therapeutic development. Recent advances introduce novel systemic options, such as biological agents and small-molecule therapy, tailored to treat severe or recalcitrant AD. Notably, dupilumab, a monoclonal antibody inhibiting interleukin 4 and 13, marked a transformative breakthrough upon gaining approval from the U.S. Food and Drug Administration (FDA) in 2017, leading to a paradigm shift in the systemic treatment of AD. Furthermore, both dupilumab and Janus kinase inhibitors, including baricitinib, abrocitinib, and tofacitinib, now approved by the Korean FDA, have established their applicability in clinical practice. These innovative therapeutic agents have demonstrated favorable clinical outcomes, effectively addressing moderate to severe AD with fewer side reactions than those associated with previous systemic immunosuppressants. This review summarizes the latest advancements and evidence regarding systemic treatments for AD, including newly approved drugs in Korea. 
		                        		
		                        		
		                        		
		                        	
10.A Study on the Characteristics of People With Severe Mental Illness in Seoul
Jiho KIM ; Hae-Woo LEE ; Mi YANG ; Hyo Been LEE ; Yong Lee JANG ; Eun Jin NA
Journal of Korean Neuropsychiatric Association 2024;63(1):49-56
		                        		
		                        			 Objectives:
		                        			Severe mental illness has become one of the leading concerns for the cost of health services. This study analyzed the demographic characteristics and compared the patterns of medical health service use according to the diagnosis of severe mental illness, including schizophrenia spectrum disease, bipolar disease, and major depressive disorder. 
		                        		
		                        			Methods:
		                        			The data from the National Health Insurance Corporation were analyzed, selecting subjects diagnosed at least once for severe mental illness between 2014 and 2019. Severe mental illness included the following: schizophrenia, schizotypal, and delusional disorders (F20– 29); manic episodes and bipolar affective disorder (F30–31); and moderate depressive episodes with psychotic features and recurrent depressive disorder (F32.3–F33). The demographic factors and patterns of medical services, such as outpatient, hospitalization, and re-admission differences, were compared according to the diagnostic categories. 
		                        		
		                        			Results:
		                        			This study included 842459 patients, with 39.6% people in F20–F29, 33.7% in F32.3– F33, and 26.8% in the F30–F31 category. There were significant differences in gender, age, insurance type, Charlson Comorbidity Index score, and economic level according to the diagnostic categories. The engagement of medical health services also showed significant differences among the diagnostic categories. F32.3–F33 showed higher engagement of outpatients than the out-groups, while F20–F29 showed a higher admission rate. The hospitalization duration was significantly longer in F20–F29, and the re-admission rate after discharge within one year was significantly higher in the same group. 
		                        		
		                        			Conclusion
		                        			This paper reviewed the differences in medical care utilization among severe mental illness. The result emphasizes the need for a mental health care system broadening to the community, facilitating psychosocial intervention, and case management. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail