1.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
2.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
3.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
4.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
5.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
6.Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections
Se Yoon PARK ; Yae Jee BAEK ; Jung Ho KIM ; Hye SEONG ; Bongyoung KIM ; Yong Chan KIM ; Jin Gu YOON ; Namwoo HEO ; Song Mi MOON ; Young Ah KIM ; Joon Young SONG ; Jun Yong CHOI ; Yoon Soo PARK ; Korean Society for Antimicrobial Therapy
Infection and Chemotherapy 2024;56(3):308-328
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
7.Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections
Se Yoon PARK ; Yae Jee BAEK ; Jung Ho KIM ; Hye SEONG ; Bongyoung KIM ; Yong Chan KIM ; Jin Gu YOON ; Namwoo HEO ; Song Mi MOON ; Young Ah KIM ; Joon Young SONG ; Jun Yong CHOI ; Yoon Soo PARK ; Korean Society for Antimicrobial Therapy
Infection and Chemotherapy 2024;56(3):308-328
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
8.Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections
Se Yoon PARK ; Yae Jee BAEK ; Jung Ho KIM ; Hye SEONG ; Bongyoung KIM ; Yong Chan KIM ; Jin Gu YOON ; Namwoo HEO ; Song Mi MOON ; Young Ah KIM ; Joon Young SONG ; Jun Yong CHOI ; Yoon Soo PARK ; Korean Society for Antimicrobial Therapy
Infection and Chemotherapy 2024;56(3):308-328
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
9.Analysis of overcrowding indices of isolation beds at a single regional emergency department in the COVID-19 pandemic era
San LEE ; Jin Hyun YOO ; So Mi SHIN ; Hyun Woong NOH ; Yun Jun KIM ; Dong Hun KWAK ; Hyung Soo KIM ; Ik Chang CHOI ; Min Gu SEO
Journal of the Korean Society of Emergency Medicine 2024;35(2):181-191
Objective:
Emergency department (ED) overcrowding is a global issue that negatively impacts the clinical outcome. Through the coronavirus disease 2019 (COVID-19) pandemic era, overcrowding of ED isolated territory (isolation bed) was aggravated. This study analyzed overcrowding indices of ED isolation beds during the COVID-19 pandemic.
Methods:
This study was a single-center, retrospective, observational study. The study analyzed 34,925 patients who visited the ED during the COVID-19 pandemic from April 2021 to August 2022. Patients who were treated in isolation beds and regular beds were compared. Among the patients using isolation beds, patients who stayed longer than 720 minutes were also classified and analyzed.
Results:
During the analysis period, 4,479 and 34,943 patients were treated in the ED isolation bed and ED regular bed, respectively. The overcrowding indices (general ward admission rate, intensive care unit admission rate, ED-length of stay, transfer rate, mortality rate, prolonged ED stay patient ratio) of the isolation beds were significantly higher than those of the ED regular bed (P<0.05). The prolonged ED stay-patient ratio of isolation beds and regular beds was affected by the number of COVID-19 patients (regular bed, r=0.617 and P=0.01; isolation bed, r=0.525 and P=0.03). The average ED-length of stay of isolation beds was longer than that of the ED regular beds. One hundred and forty-five patients were classified as prolonged ED stay patients. Their time from the decision point to the discharge point comprised a higher rate with an average of 76.52%.
Conclusion
ED isolation beds are more vulnerable to infectious disease outbreaks. A proper medical policy and arrangement management system that can flexibly deal with disaster emergencies are required
10.Different development patterns of reward behaviors induced by ketamine and JWH-018 in striatal GAD67 knockdown mice
Sun Mi GU ; Eunchong HONG ; Sowoon SEO ; Sanghyeon KIM ; Seong Shoon YOON ; Hye Jin CHA ; Jaesuk YUN
Journal of Veterinary Science 2024;25(5):e63-
Objective:
The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development.
Methods:
We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP).
Results:
Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group.
Conclusions
and Relevance: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.

Result Analysis
Print
Save
E-mail