1.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
2.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
3.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
4.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
5.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
6.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
7.Updates of Evidence-Based Nursing Practice Guidelines for Peripheral Intravenous Infusion Therapy
Ihn Sook JEONG ; Chan Mi KANG ; Kyeong Sug KIM ; Hyun Lim KIM ; Jeong Ok PARK ; Joohyun LEE ; Kyung Choon LIM ; Go Eun CHOI
Journal of Korean Clinical Nursing Research 2025;31(1):1-14
Purpose:
This study was conducted to update the practice guidelines for intravenous infusion therapy published in 2017, focusing on the most recent evidence for peripheral intravenous infusion therapy.
Methods:
The guideline update was conducted using the 22-step methodology.
Results:
The updated guidelines consist of 17 domains and 235 recommendations (including 284 sub-recommendations). The domains are as follows: general instructions (5 items), peripheral catheter selection (7), catheter insertion site selection (11), management during peripheral catheter insertion (10), post-insertion management (30), perfusion and locking (17), blood sampling via peripheral catheters(6), exchange and removal of peripheral catheters (6), infusion set management (14), add-on devices (32), complications (25), chemotherapy infusions (10), PCA infusions (7), parenteral nutrition (20), transfusion therapy (23), education (5), and documentation and reporting (7). The evidence levels for these recommendations are as follows: 27(9.5%) at level I, 3 (1.1%) at level I A/P, 118 (41.5%) at level II, and 136 (47.9%) at level III.Recommendation grades are categorized as follows: 30 (10.6%) at level A, 118 (41.5%) at level B, and 136(47.9%) at level C. Of these, 73 (25.7%) recommendations were newly developed, 49 (17.3%) underwent major revisions, and 147 (51.7%) underwent minor revisions.
Conclusion
The updated practice guideline, based on the latest evidence, is anticipated to enhance nursing practice related to peripheral intravenous infusion therapy.
8.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
9.Review and latest trends of dental ceramic restorative materials
Seon-Mi BYEON ; Kyeong-Seon KIM ; Jae-Woo SHIN ; Jung-Hwan LEE ; Jeong-Hui JI ; Min-Soo BAE ; Yong-Seok JANG ; Min-Ho LEE ; Tae-Sung BAE
Korean Journal of Dental Materials 2024;51(1):1-14
Prosthodontic treatment is being performed for morphology and functional restoration due to damage and loss of teeth. As the aesthetic demands of patients increase, interest in ceramic materials with shades and translucency similar to natural teeth has increased.Recently, the manufacturing and processing technology of ceramic materials has greatly improved, and the market for dental ceramic materials is growing rapidly. The purpose of this literature review and evaluation is to provide information on the classification and properties of dental ceramic materials with excellent aesthetics and fracture resistance. In this article, it is classified as follows: I) Dental porcelain; II) Sinterable all-ceramic; III) Glass-ceramic for casting; IV) Glass-infiltrated alumina ceramic; V) Glass-ceramic ingots for heat-pressing technique; Vl) Blocks for CAD/CAM; Vll) Ceramic for CAD/3D printing. Dental ceramic materials and their restoration manufacturing methods have evolved significantly over the past decade. As a result, the manufacturing method of restorations has progressed from the layered firing technique of powdered materials or heat-pressing technique to the cutting and processing of single and multi-layer blocks using CAD/CAM technology, leading to the introduction of CAD/3D printing technology. In this manuscript, we will review the types of ceramic materials used in the fabrication of dental restorations and their advantages and disadvantages.
10.Visual and Auditory Sensory Impairments Differentially Relate with Alzheimer’s Pathology
Gihwan BYEON ; Min Soo BYUN ; Dahyun YI ; Joon Hyung JUNG ; Nayeong KONG ; Yoonyoung CHANG ; MUSUNG KEUM ; Gijung JUNG ; Hyejin AHN ; Jun-Young LEE ; Yu Kyeong KIM ; Koung Mi KANG ; Chul-Ho SOHN ; Dong Young LEE ;
Clinical Psychopharmacology and Neuroscience 2024;22(4):610-623
Objective:
We intended to investigate the relationships between visual sensory impairment (VSI) or auditory sensory impairment (ASI) and brain pathological changes associated with cognitive decline in older adults.
Methods:
We primarily tried to examine whether each sensory impairment is related to Alzheimer’s disease (AD) pathology, specifically beta-amyloid (Aβ) deposition, through both cross-sectional and longitudinal approaches in cognitively unimpaired older adults. Self-report questionnaires on vision and hearing status were administered at the baseline.Neuroimaging scans including brain [ 11 C] Pittsburgh Compound B PET and MRI, as well as clinical assessments, were performed at baseline and 2-year follow-up.
Results:
Cross-sectional analyses showed that the VSI-positive group had significantly higher Aβ deposition than the VSI-negative group, whereas there was no significant association between ASI positivity and Aβ deposition. Longitudinal analyses revealed that VSI positivity at baseline was significantly associated with increased Aβ deposition over 2 years (β = 0.153, p = 0.025), although ASI positivity was not (β = 0.045, p = 0.518). VSI positivity at baseline was also significantly associated with greater atrophic changes in AD-related brain regions over the 2-year follow-up period (β = −0.207, p = 0.005), whereas ASI positivity was not (β = 0.024, p = 0.753). Neither VSI nor ASI positivity was related to cerebrovascular injury, as measured based on the white matter hyperintensity volume.
Conclusion
The findings suggest that VSI is probably related to AD-specific pathological changes, which possibly mediate the reported relationship between VSI and cognitive decline. In contrast, ASI appears not associated with AD pathologies but may contribute to cognitive decline via other mechanisms.

Result Analysis
Print
Save
E-mail