1.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
2.Efficient synthesis of L-methionine by engineering the one carbon module of Escherichia coli.
Bo ZHANG ; Ying WANG ; Kun NIU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(8):3302-3317
L-methionine, also known as L-aminomethane, is one of the eight essential amino acids required by the human body and has important applications in the fields of feed, medicine, and food. In this study, an L-methionine high-yielding strain was constructed using a modular metabolic engineering strategy based on the M2 strain (Escherichia coli W3110 ΔIJAHFEBC/PAM) previously constructed in our laboratory. Firstly, the production of one-carbon module methyl donors was enhanced by overexpression of methylenetetrahydrofolate reductase (methylenetetrahydrofolate reductase, MetF) and screening of hydroxymethyltransferase (GlyA) from different sources, optimizing the one-carbon module. Subsequently, cysteamine lyase (hydroxymethyltransferase, MalY) and cysteine internal transporter gene (fliY) were overexpressed to improve the supply of L-homocysteine and L-cysteine, two precursors of the one-carbon module. The production of L-methionine in shake flask fermentation was increased from 2.8 g/L to 4.05 g/L, and up to 18.26 g/L in a 5 L fermenter. The results indicate that the one carbon module has a significant impact on the biosynthesis of L-methionine, and efficient biosynthesis of L-methionine can be achieved through optimizing the one carbon module. This study may facilitate further improvement of microbial fermentation production of L-methionine.
Humans
;
Methionine
;
Methylenetetrahydrofolate Reductase (NADPH2)
;
Carbon
;
Cysteine
;
Escherichia coli/genetics*
;
Hydroxymethyl and Formyl Transferases
;
Carrier Proteins
;
Escherichia coli Proteins
3.Synthesis and application of the methyl analogues of S-adenosyl-L-methionine.
Chinese Journal of Biotechnology 2023;39(11):4428-4444
Methylation plays a vital role in biological systems. SAM (S-adenosyl-L-methionine), an abundant cofactor in life, acts as a methyl donor in most biological methylation reactions. SAM-dependent methyltransferases (MTase) transfer a methyl group from SAM to substrates, thereby altering their physicochemical properties or biological activities. In recent years, many SAM analogues with alternative methyl substituents have been synthesized and applied to methyltransferases that specifically transfer different groups to the substrates. These include functional groups for labeling experiments and novel alkyl modifications. This review summarizes the recent progress in the synthesis and application of SAM methyl analogues and prospects for future research directions in this field.
S-Adenosylmethionine/metabolism*
;
Methionine
;
Methyltransferases/metabolism*
;
Methylation
;
Racemethionine
4.Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology.
Qin ZHANG ; Hong ZHANG ; Chun-Mei YANG ; Bo WANG ; Chen-Yang LI ; Qi LI
China Journal of Chinese Materia Medica 2023;48(2):507-516
In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.
Rats
;
Animals
;
Periploca
;
Cysteine
;
Cytidine Diphosphate Choline
;
Network Pharmacology
;
Phosphorylcholine
;
Metabolomics
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers
;
Glycerophospholipids
;
Methionine
;
Purines
;
Chromatography, High Pressure Liquid
5.Clinical characteristics and genetic analysis of a child with Galactosemia due to compound heterozygous variants of GALT gene.
Zhenhua XIE ; Jing LIU ; Xian LI ; Mengjun XIAO ; Qiang ZHANG ; Zhenkun ZHANG ; Yaodong ZHANG ; Dongxiao LI
Chinese Journal of Medical Genetics 2023;40(7):842-846
OBJECTIVE:
To explore the clinical features and genetic basis of a child with Galactosemia.
METHODS:
A child who had presented at the Children's Hospital Affiliated to Zhengzhou University on November 20, 2019 was selected as the study subject. Clinical data of the child was collected. Whole exome sequencing was carried out for the child. Candidate variants were validated by Sanger sequencing.
RESULTS:
Clinical manifestations of the child have included anemia, feeding difficulty, jaundice, hypomyotonia, abnormal liver function and coagulation abnormality. Tandem mass spectrometry showed increased citrulline, methionine, ornithine and tyrosine. Urine organic acid analysis showed increased phenyllactic acid, 4-hydroxyphenylacetic acid, 4-hydroxyphenyllactic acid, 4-hydroxyphenylpyruvate and N-acetyltyrosine. Genetic testing revealed that the child has harbored compound heterozygous variants of the GALT gene, namely c.627T>A (p.Y209*) and c.370G>C (p.G124R), which were respectively inherited from her healthy parents. Among these, c.627T>A (p.Y209*) was known as a likely pathogenic variant, while c.370G>C (p. G124R) was unreported previously and also predicted as a likely pathogenic variant(PM1+PM2_Supporting+PP3_Moderate+PPR).
CONCLUSION
Above discovery has expanded the spectrum of the GALT gene variants underlying Galactosemia. Patients with thrombocytopenia, feeding difficulties, jaundice, abnormal liver function and coagulation abnormality without obvious causes should be analyzed by screening of metabolic diseases in combination with genetic testing.
Child
;
Female
;
Humans
;
Galactosemias/genetics*
;
Genetic Testing
;
Health Status
;
Methionine
;
Muscle Hypotonia
;
Mutation
6.Gut microbial methionine impacts circadian clock gene expression and reactive oxygen species level in host gastrointestinal tract.
Xiaolin LIU ; Yue MA ; Ying YU ; Wenhui ZHANG ; Jingjing SHI ; Xuan ZHANG ; Min DAI ; Yuhan WANG ; Hao ZHANG ; Jiahe ZHANG ; Jianghua SHEN ; Faming ZHANG ; Moshi SONG ; Jun WANG
Protein & Cell 2023;14(4):309-313
7.Effects of Methionine Restriction on Proliferation, Cell Cycle, and Apoptosis of Human Acute Leukemia Cells.
Yu-Jie HE ; Si-Shu YU ; Bin ZHANG ; Mei-Rong LI ; Li-Jun XU ; Long-Ming LIANG ; Zheng-Gang ZHAO ; Zi-Jian ZHAO ; Su-Jin ZHOU ; Fang-Hong LI
Journal of Experimental Hematology 2023;31(5):1290-1295
OBJECTIVE:
To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells.
METHODS:
Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay.
RESULTS:
Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells.
CONCLUSION
Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.
Humans
;
Cyclin B1/pharmacology*
;
Cell Proliferation
;
Methionine/pharmacology*
;
Cell Cycle
;
Apoptosis
;
Leukemia, Myeloid, Acute
;
Cell Division
;
Cell Cycle Proteins
;
Jurkat Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
HL-60 Cells
8.Association between maternal plasma one-carbon biomarkers during pregnancy and fetal growth in twin pregnancies.
Xiao Li GONG ; Yu Feng DU ; Yang Yu ZHAO ; Tian Chen WU ; Hui Feng SHI ; Xiao Li WANG ; Yuan WEI
Chinese Journal of Obstetrics and Gynecology 2023;58(10):774-782
Objective: To characterize the relationship between the levels of plasma methyl donor and related metabolites (including choline, betaine, methionine, dimethylglycine and homocysteine) and fetal growth in twin pregnancies. Methods: A hospital-based cohort study was used to collect clinical data of 92 pregnant women with twin pregnancies and their fetuses who were admitted to Peking University Third Hospital from March 2017 to January 2018. Fasting blood was collected from the pregnant women with twin pregnancies (median gestational age: 18.9 weeks). The levels of methyl donors and related metabolites in plasma were quantitatively analyzed by high-performance liquid chromatography combined with mass spectrometry. The generalized estimation equation was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and neonatal outcomes of twins, and the generalized additive mixed model was used to analyze the relationship between maternal plasma methyl donors and related metabolites levels and fetal growth ultrasound indicators. Results: (1) General clinical data: of the 92 women with twin pregnancies, 66 cases (72%) were dichorionic diamniotic (DCDA) twin pregnancies, and 26 cases (28%) were monochorionic diamniotic (MCDA) twin pregnancies. The comparison of the levels of five plasma methyl donors and related metabolites in twin pregnancies with different basic characteristics showed that the median levels of plasma choline and betaine in pregnant women ≥35 years old were higher than those in pregnant women <35 years old, and the differences were statistically significant (all P<0.05). (2) Correlation between plasma methyl donor and related metabolites levels and neonatal growth indicators: after adjusting for confounding factors, plasma homocysteine level in pregnant women with twins was significantly negatively correlated with neonatal birth weight (β=-47.9, 95%CI:-94.3- -1.6; P=0.043). Elevated methionine level was significantly associated with decreased risks of small for gestational age infants (SGA; OR=0.5, 95%CI: 0.3-0.9; P=0.021) and low birth weight infants (OR=0.6, 95%CI: 0.4-0.9; P=0.020). Increased homocysteine level was associated with increased risks of SGA (OR=1.5, 95%CI: 1.0-2.2; P=0.029) and inconsistent growth in twin fetuses (OR=1.9, 95%CI: 1.0-3.7; P=0.049). (3) Correlation between the levels of plasma methyl donors and related metabolites and intrauterine growth indicators of twins pregnancies: for every 1 standard deviation increase in plasma choline level in pregnant women with twin pregnancies, fetal head circumference, abdominal circumference, femoral length and estimated fetal weight in the second trimester increased by 1.9 mm, 2.6 mm, 0.5 mm and 20.1 g, respectively, and biparietal diameter, abdominal circumference and estimated fetal weight increased by 0.7 mm, 3.0 mm and 38.4 g in the third trimester, respectively, and the differences were statistically significant (all P<0.05). (4) Relationship between plasma methyl donor and related metabolites levels in pregnant women with different chorionicity and neonatal birth weight and length: the negative correlation between plasma homocysteine level and neonatal birth weight was mainly found in DCDA twin pregnancy (β=-65.9, 95%CI:-110.6- -21.1; P=0.004). The levels of choline, betaine and dimethylglycine in plasma of MCDA twin pregnancy were significantly correlated with the birth weight and length of newborns (all P<0.05). Conclusion: Homocysteine level is associated with low birth weight in twins, methionine is associated with decreased risk of SGA, and choline is associated with fetal growth in the second and third trimesters of pregnancy.
Adult
;
Female
;
Humans
;
Infant, Newborn
;
Pregnancy/metabolism*
;
Betaine/metabolism*
;
Birth Weight/physiology*
;
Choline/metabolism*
;
Cohort Studies
;
Fetal Development/physiology*
;
Fetal Weight/physiology*
;
Homocysteine/metabolism*
;
Methionine/metabolism*
;
Pregnancy, Twin/physiology*
;
Biomarkers/metabolism*
;
Pregnancy Trimesters/physiology*
;
Pregnancy Outcome
9.Effect of astragaloside IV and salvianolic acid B on antioxidant stress and vascular endothelial protection in the treatment of atherosclerosis based on metabonomics.
Xiang-Lin KONG ; Qin LYU ; Ya-Qi ZHANG ; Dong-Fang KANG ; Chao LI ; Lei ZHANG ; Zi-Chen GAO ; Xin-Xin LIU ; Ji-Biao WU ; Yun-Lun LI
Chinese Journal of Natural Medicines (English Ed.) 2022;20(8):601-613
Vascular endothelial cells and oxidation reduction system play an important role in the pathogenesis of atherosclerosis (AS). If these conditions are disordered, it will inevitably lead to plaque formation and even rupture. Astragaloside IV (AsIV) and salvianolic acid B (Sal B) are the main active ingredients of Astragalus membranaceus and Salvia miltiorrhiza, respectively, and found to ameliorate vascular endothelial dysfunction and protect against oxidative stress in recent studies. However, it is still unknown if the combination of AsIV and Sal B (AsIV + Sal B) can inhibit the development of plaque through amplifying the protective effect of vascular endothelial cells and anti-oxidative stress effect. To clarify the role of AsIV + Sal B in AS, we observed the efficacy of each group (Control, Model, AsIV, Sal B, and AsIV + Sal B) by biomolecular assays, such as observing the pathological morphology of the aorta by oil red O staining, evaluating the level of oxidative stress and endothelial cells in the serum by the Elisa test, and analyzing the changes of all small molecule metabolites in liver tissue by UPLC-QTOF-MS. Results showed that AsIV, Sal B and AsIV + Sal B decreased the deposition of lipid in the arterial wall, so as to exert the effect of anti-oxidant stress and vascular endothelial protection, where the inhibitory effect of AsIV + Sal B was the most obvious. Metabonomics analysis showed that Sal B regulated the metabolic pathways of arginine and proline. AsIV regulated glycerol metabolism and saturated fatty acid biosynthesis metabolism. AsIV + Sal B is mainly related to the regulation of the citrate cycle (TCA cycle), alanine, aspartic acid, and glutamate metabolism, cysteine, and methionine metabolism. Succinic acid and methionine are synergistic metabolites that exert an enhancing effect when AsIV and Sal B were used in combination. In conclusion, we demonstrated that AsIV acompanied with Sal B can be successfully used for anti-oxidative stress and vascular endothelial protection of AS, and succinic acid and methionine are the synergistic metabolites.
Antioxidants
;
Atherosclerosis
;
Benzofurans
;
Endothelial Cells
;
Humans
;
Methionine
;
Saponins
;
Succinic Acid
;
Triterpenes
10.Variations in fecal microbiota of first episode schizophrenia associated with clinical assessment and serum metabolomics.
Xue Ping WANG ; Yu Ya Nan ZHANG ; Tian Lan LU ; Zhe LU ; Zhe Wei KANG ; Yao Yao SUN ; Wei Hua YUE
Journal of Peking University(Health Sciences) 2022;54(5):863-873
OBJECTIVE:
To explore the role of the microbiota in drug naïve first-onset schizophrenia patients and to seek evidence from multidimensional longitudinal analyses of the intestinal microbiome and clinical phenotype with antipsychotic drugs (APDs) therapy.
METHODS:
In this study, 28 drug naïve first onset schizophrenia patients and age-, gender- and education-matched 29 healthy controls were included, and the patients were treated with APDs. We collected fecal and serum samples at baseline and after 6 weeks of treatment to identify the different microbiota strains and analyse their correlation with clinical symptoms and serum metabolites. The 16S rRNA genes of the gut microbiota were sequenced, and the diversity and relative abundance at the phylum and genus levels were analyzsed in detail. The PANSS score, BMI changed value, and serum metabolome were included in the data analyses.
RESULTS:
A multiomics study found a potential connection among the clinical phenotype, microbiota and metabolome. The species diversity analyses revealed that the alpha diversity index (chao1, ACE, and goods_coverage) in the schizophrenia APDs group was significantly lower than that in the control group, and the schizophrenia group had clear demarcation from the control group. The microbiota composition analysis results showed that the relative abundance of the genera of Bacteroides, Streptococcus, Romboutsia, and Eubacterium ruminantium group significantly changed after APDs treatment in the schizophrenia patients. These strains could reflect the APDs treatment effect. More genera had differences between the patient and control groups. The LEfSe analysis showed that Prevotella_9 and Bacteroides were enriched in schizophrenia, while Blautia, Dialister, and Roseburia were enriched in the control group. The correlation analysis between microbiota and clinical symptoms showed that Bifidobacterium in schizophrenia was positively correlated with the PANSS reduction rate of the general psychopathology scale. The BMI changed value was positively correlated with the alteration of Clostridium_sensu_stricto_1 during treatment and the baseline abundance of Bacteroides. Moreover, metabolomic data analysis revealed a significant correlation between specific genera and metabolites, such as L-methionine, L-proline, homovanillic acid, N-acetylserotonin, and vitamin B6.
CONCLUSION
Our study found some microbiota features in schizophrenia patients and healthy controls, and several strains were correlated with APDs effects. Furthermore, the multiomics analysis implies the intermediate role of microbiota between antipsychotic effects and serum metabolites and provides new evidence to interpret the difference from multiple levels in the pathogenesis and pharmacological mechanism of schizophrenia.
Humans
;
Antipsychotic Agents
;
Homovanillic Acid
;
Metabolomics/methods*
;
Methionine
;
Microbiota
;
Proline
;
RNA, Ribosomal, 16S/genetics*
;
Schizophrenia
;
Vitamin B 6
;
Feces

Result Analysis
Print
Save
E-mail