1.Investigating the impact of silencing an RNA-binding protein gene SlRBP1 on tomato photosynthesis through RNA-sequencing analysis.
Xiwen ZHOU ; Liqun MA ; Hongliang ZHU
Chinese Journal of Biotechnology 2024;40(1):150-162
Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.
RNA
;
Solanum lycopersicum/genetics*
;
Photosynthesis/genetics*
;
Chlorophyll
;
RNA-Binding Proteins/genetics*
2.Physiological regulation of salicylic acid on Helianthus tubeuosus upon copper stress and root FTIR analysis.
Jinxiang AI ; Jieke GE ; Ziyi ZHANG ; Wenqian CHEN ; Jiayi LIANG ; Xinyi WANG ; Qiaoyuan WU ; Jie YU ; Yitong YE ; Tianyi ZHOU ; Jinyi SU ; Wenwen LI ; Yuhuan WU ; Peng LIU
Chinese Journal of Biotechnology 2023;39(2):695-712
Phytoremediation plays an important role in the treatment of heavy metal pollution in soil. In order to elucidate the mechanism of salicylic acid (SA) on copper absorption, seedlings from Xuzhou (with strong Cu-tolerance) and Weifang Helianthus tuberosus cultivars (with weak Cu-tolerance) were selected for pot culture experiments. 1 mmol/L SA was sprayed upon 300 mg/kg soil copper stress, and the photosynthesis, leaf antioxidant system, several essential mineral nutrients and the changes of root upon copper stress were analyzed to explore the mechanism of copper resistance. The results showed that Pn, Tr, Gs and Ci upon copper stress decreased significantly compared to the control group. Meanwhile, chlorophyll a, chlorophyll b and carotenoid decreased with significant increase in initial fluorescence (F0), maximum photochemical quantum yield of PSⅡ (Fv/Fm), electron transfer rate (ETR) and photochemical quenching coefficient (qP) content all decreased. The ascorbic acid (AsA) content was decreased, the glutathione (GSH) value was increased, the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity in the leaves were decreased, and the peroxidase (POD) activity was significantly increased. SA increased the Cu content in the ground and root system, and weakened the nutrient uptake capacity of K, Ca, Mg, and Zn in the root stem and leaves. Spray of exogenous SA can maintain the opening of leaf stomata, improve the adverse effect of copper on photosynthetic pigment and PSⅡ reaction center. Mediating the SOD and APX activity started the AsA-GSH cycle process, effectively regulated the antioxidant enzyme system in chrysanthemum taro, significantly reduced the copper content of all parts of the plant, and improved the ion exchange capacity in the body. External SA increased the content of the negative electric group on the root by changing the proportion of components in the root, promoted the absorption of mineral nutrient elements and the accumulation of osmoregulatory substances, strengthened the fixation effect of the root on metal copper, and avoided its massive accumulation in the H. tuberosus body, so as to alleviate the inhibitory effect of copper on plant growth. The study revealed the physiological regulation of SA upon copper stress, and provided a theoretical basis for planting H. tuberosus to repair soil copper pollution.
Antioxidants
;
Copper
;
Helianthus/metabolism*
;
Salicylic Acid/pharmacology*
;
Chlorophyll A/pharmacology*
;
Spectroscopy, Fourier Transform Infrared
;
Chlorophyll/pharmacology*
;
Ascorbic Acid
;
Superoxide Dismutase/metabolism*
;
Photosynthesis
;
Glutathione
;
Plant Leaves
;
Stress, Physiological
;
Seedlings
3.Effect of hemX gene deletion on heme synthesis in Bacillus amyloliquefaciens.
Jiameng LIU ; Yexue LIU ; Chenxu ZHAO ; Wenhang WANG ; Qinggang LI ; Fuping LU ; Yu LI
Chinese Journal of Biotechnology 2023;39(3):1119-1130
Heme, which exists widely in living organisms, is a porphyrin compound with a variety of physiological functions. Bacillus amyloliquefaciens is an important industrial strain with the characteristics of easy cultivation and strong ability for expression and secretion of proteins. In order to screen the optimal starting strain for heme synthesis, the laboratory preserved strains were screened with and without addition of 5-aminolevulinic acid (ALA). There was no significant difference in the heme production of strains BA, BAΔ6 and BAΔ6ΔsigF. However, upon addition of ALA, the heme titer and specific heme production of strain BAΔ6ΔsigF were the highest, reaching 200.77 μmol/L and 615.70 μmol/(L·g DCW), respectively. Subsequently, the hemX gene (encoding the cytochrome assembly protein HemX) of strain BAΔ6ΔsigF was knocked out to explore its role in heme synthesis. It was found that the fermentation broth of the knockout strain turned red, while the growth was not significantly affected. The highest ALA concentration in flask fermentation reached 82.13 mg/L at 12 h, which was slightly higher than that of the control 75.11 mg/L. When ALA was not added, the heme titer and specific heme production were 1.99 times and 1.45 times that of the control, respectively. After adding ALA, the heme titer and specific heme production were 2.08 times and 1.72 times higher than that of the control, respectively. Real-time quantitative fluorescent PCR showed that the expressions of hemA, hemL, hemB, hemC, hemD, and hemQ genes at transcription level were up-regulated. We demonstrated that deletion of hemX gene can improve the production of heme, which may facilitate future development of heme-producing strain.
Gene Deletion
;
Bacillus amyloliquefaciens/metabolism*
;
Aminolevulinic Acid/metabolism*
;
Heme/metabolism*
;
Fermentation
4.Breeding of Chlorella mutants deficient in chlorophyll synthesis and evaluation of its protein yield and quality.
Xiao CHEN ; Bailong WANG ; Dong WEI
Chinese Journal of Biotechnology 2023;39(3):1247-1259
The aim of this study was to construct Chlorella mutants deficient in chlorophyll synthesis by atmospheric pressure room temperature plasma (ARTP) mutagenesis, and screen novel algal species with very low chlorophyll content which is suitable for protein production by fermentation. Firstly, the lethal rate curve of mixotrophic wild type cells was established by optimizing the mutagenesis treatment time. The mixotrophic cells in early exponential phase were treated by the condition of over 95% lethal rate, and 4 mutants with the visual change of colony color were isolated. Subsequently, the mutants were cultured in shaking flasks heterotrophically for evaluation of their protein production performance. P. ks 4 mutant showed the best performance in Basal medium containing 30 g/L glucose and 5 g/L NaNO3. The protein content and productivity reached 39.25% dry weight and 1.15 g/(L·d), with an amino acid score of 101.34. The chlorophyll a content decreased 98.78%, whereas chlorophyll b was not detected, and 0.62 mg/g of lutein content made the algal biomass appear golden yellow. This work provides a novel germplasm, the mutant P. ks 4 with high yield and high quality, for alternative protein production by microalgal fermentation.
Chlorella/metabolism*
;
Chlorophyll A/metabolism*
;
Plant Breeding
;
Mutagenesis
;
Chlorophyll/metabolism*
;
Biomass
;
Microalgae
5.Physiological and biochemical mechanisms of brassinosteroid in improving anti-cadmium stress ability of Panax notoginseng.
Gao-Yu LIAO ; Zheng-Qiang JIN ; Lan-Ping GUO ; Ya-Meng LIN ; Zi-Xiu ZHENG ; Xiu-Ming CUI ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(6):1483-1490
In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.
Cadmium/metabolism*
;
Antioxidants/pharmacology*
;
Panax notoginseng
;
Brassinosteroids/pharmacology*
;
Chlorophyll/metabolism*
;
Plant Roots/metabolism*
;
Stress, Physiological
6.Cryo-EM structures of a prokaryotic heme transporter CydDC.
Chen ZHU ; Yanfeng SHI ; Jing YU ; Wenhao ZHAO ; Lingqiao LI ; Jingxi LIANG ; Xiaolin YANG ; Bing ZHANG ; Yao ZHAO ; Yan GAO ; Xiaobo CHEN ; Xiuna YANG ; Lu ZHANG ; Luke W GUDDAT ; Lei LIU ; Haitao YANG ; Zihe RAO ; Jun LI
Protein & Cell 2023;14(12):919-923
7.Hyperoxia caused intestinal metabolism disorder in mice.
Wen ZHANG ; Tao CHEN ; Bao FU ; Huajun CHEN ; Xiaoyun FU ; Zhouxiong XING
Chinese Critical Care Medicine 2023;35(9):980-983
OBJECTIVE:
To investigate the effect of hyperoxia on intestinal metabolomics in mice.
METHODS:
Sixteen 8-week-old male C57BL/6 mice were randomly divided into hyperoxia group and control group, with 8 mice in each group. The hyperoxia group was exposed to 80% oxygen for 14 days. Mice were anesthetized and euthanized, and cecal contents were collected for untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) combined detection. Orthogonal partial least square discriminant analysis (OPLS-DA), volcano plot analysis, heat map analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the effects of hyperoxia on metabolism.
RESULTS:
(1) OPLS-DA analysis showed that R2Y was 0.967 and Q2 was 0.796, indicating that the model was reliable. (2) Volcano plot and heat map analysis showed significant statistical differences in the expression levels of metabolites between the two groups, with 541 up-regulated metabolites, 64 down-regulated metabolites, and 907 no differences, while the elevated 5-hydroxy-L-lysine was the most significant differential metabolite induced by high oxygen. (3) KEGG pathway enrichment analysis showed that porphyrin and chlorophyll metabolism (P = 0.005), lysine degradation (P = 0.047), and aromatic compound degradation (P = 0.024) were the targets affected by hyperoxia. (4) Differential analysis of metabolic products through KEGG enrichment pathway showed that hyperoxia had a significant impact on the metabolism of porphyrin and chlorophyll, lysine, and aromatic compounds such as benzene and o-cresol.
CONCLUSIONS
Hyperoxia significantly induces intestinal metabolic disorders. Hyperoxia enhances the metabolism of porphyrins and chlorophyll, inhibits the degradation of lysine, and delays the degradation of aromatic compounds such as benzene and o-cresol.
Mice
;
Male
;
Animals
;
Lysine
;
Hyperoxia
;
Benzene
;
Mice, Inbred C57BL
;
Metabolic Diseases
;
Oxygen
;
Chlorophyll
;
Porphyrins
;
Biomarkers/metabolism*
8.Andrographolide protects against atrial fibrillation by alleviating oxidative stress injury and promoting impaired mitochondrial bioenergetics.
Pengcheng YU ; Jiaru CAO ; Huaxin SUN ; Yingchao GONG ; Hangying YING ; Xinyu ZHOU ; Yuxing WANG ; Chenyang QI ; Hang YANG ; Qingbo LV ; Ling ZHANG ; Xia SHENG
Journal of Zhejiang University. Science. B 2023;24(7):632-649
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia seen in clinical settings, which has been associated with substantial rates of mortality and morbidity. However, clinically available drugs have limited efficacy and adverse effects. We aimed to investigate the mechanisms of action of andrographolide (Andr) with respect to AF. We used network pharmacology approaches to investigate the possible therapeutic effect of Andr. To define the role of Andr in AF, HL-1 cells were pro-treated with Andr for 1 h before rapid electronic stimulation (RES) and rabbits were pro-treated for 1 d before rapid atrial pacing (RAP). Apoptosis, myofibril degradation, oxidative stress, and inflammation were determined. RNA sequencing (RNA-seq) was performed to investigate the relevant mechanism. Andr treatment attenuated RAP-induced atrial electrophysiological changes, inflammation, oxidative damage, and apoptosis both in vivo and in vitro. RNA-seq indicated that oxidative phosphorylation played an important role. Transmission electron microscopy and adenosine triphosphate (ATP) content assay respectively validated the morphological and functional changes in mitochondria. The translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the molecular docking suggested that Andr might exert a therapeutic effect by influencing the Keap1-Nrf2 complex. In conclusions, this study revealed that Andr is a potential preventive therapeutic drug toward AF via activating the translocation of Nrf2 to the nucleus and the upregulation of heme oxygenase-1 (HO-1) to promote mitochondrial bioenergetics.
Animals
;
Rabbits
;
Atrial Fibrillation/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Signal Transduction
;
NF-E2-Related Factor 2/pharmacology*
;
Molecular Docking Simulation
;
Oxidative Stress
;
Energy Metabolism
;
Mitochondria/metabolism*
;
Inflammation/metabolism*
;
Heme Oxygenase-1
9.Role and mechanism of SIRT1 in regulating Nrf2/HO-1 signaling pathway in septic liver injury.
Mengxiao CHEN ; Yiren ZHANG ; Yi WANG ; Tayier GULIFEIRE ; Xiangyou YU
Chinese Critical Care Medicine 2023;35(6):598-603
OBJECTIVE:
To investigate the role and mechanism of silent information regulator 1 (SIRT1) in regulating nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in oxidative stress and inflammatory response to sepsis-induced liver injury.
METHODS:
A total of 24 male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, cecal ligation and puncture (CLP) group, SIRT1 agonist SRT1720 pretreatment (CLP+SRT1720) group and SIRT1 inhibitor EX527 pretreatment (CLP+EX527) group, with 6 rats in each group. Two hours before operation, SRT1720 (10 mg/kg) or EX527 (10 mg/kg) were intraperitoneally injected into the CLP+SRT1720 group and CLP+EX527 group, respectively. Blood was collected from the abdominal aorta at 24 hours after modeling and the rats were sacrificed for liver tissue. The serum levels of interleukins (IL-6, IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected by microplate method. Hematoxylin-eosin (HE) staining was used to observe the pathological injury of rats in each group. The levels of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), glutathione (GSH) and superoxide dismutase (SOD) in liver tissue were detected by corresponding kits. The mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.
RESULTS:
Compared with the Sham group, the serum levels of IL-6, IL-1β, TNF-α, ALT and AST in the CLP group were significantly increased; histopathological results showed that liver cords were disordered, hepatocytes were swollen and necrotic, and a large number of inflammatory cells infiltrated; the contents of MDA and 8-OHdG in liver tissue increased, while the contents of GSH and SOD decreased; and the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 in liver tissues were significantly decreased. These results suggest that sepsis rats have liver dysfunction, and the levels of SIRT1, Nrf2, HO-1 and antioxidant protein in liver tissues were decreased, while the levels of oxidative stress and inflammation were increased. Compared with the CLP group, the levels of inflammatory factors and oxidative stress were significantly decreased in the CLP+SRT1720 group, the mRNA and protein expressions of SIRT1, Nrf2 and HO-1 were significantly increased [IL-6 (ng/L): 34.59±4.21 vs. 61.84±3.78, IL-1β (ng/L): 41.37±2.70 vs. 72.06±3.14, TNF-α (ng/L): 76.43±5.23 vs. 130.85±5.30, ALT (U/L): 30.71±3.63 vs. 64.23±4.59, AST (U/L): 94.57±6.08 vs. 145.15±6.86, MDA (μmol/g): 6.11±0.28 vs. 9.23±0.29, 8-OHdG (ng/L): 117.43±10.38 vs. 242.37±11.71, GSH (μmol/g): 11.93±0.88 vs. 7.66±0.47, SOD (kU/g): 121.58±5.05 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 1.20±0.13 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 1.21±0.12 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 1.71±0.06 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.89±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.87±0.08 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.93±0.14 vs. 0.54±0.12, all P < 0.05], these results indicated that SIRT1 agonist SRT1720 pretreatment could improve liver injury in sepsis rats. However, pretreatment with SIRT1 inhibitor EX527 showed the opposite effect [IL-6 (ng/L): 81.05±6.47 vs. 61.84±3.78, IL-1β (ng/L): 93.89±5.83 vs. 72.06±3.14, TNF-α (ng/L): 177.67±5.12 vs. 130.85±5.30, ALT (U/L): 89.33±9.52 vs. 64.23±4.59, AST (U/L): 179.59±6.44 vs. 145.15±6.86, MDA (μmol/g): 11.39±0.51 vs. 9.23±0.29, 8-OHdG (ng/L): 328.83±11.26 vs. 242.37±11.71, GSH (μmol/g): 5.07±0.34 vs. 7.66±0.47, SOD (kU/g): 59.37±4.28 vs. 83.57±4.84, SIRT1 mRNA (2-ΔΔCt): 0.34±0.03 vs. 0.46±0.02, Nrf2 mRNA (2-ΔΔCt): 0.46±0.04 vs. 0.58±0.03, HO-1 mRNA (2-ΔΔCt): 0.21±0.03 vs. 0.48±0.07, SIRT1 protein (SIRT1/β-actin): 0.47±0.04 vs. 0.58±0.03, Nrf2 protein (Nrf2/β-actin): 0.32±0.07 vs. 0.51±0.09, HO-1 protein (HO-1/β-actin): 0.19±0.09 vs. 0.54±0.12, all P < 0.05].
CONCLUSIONS
SIRT1 can inhibit the release of proinflammatory factors and alleviate the oxidative damage of hepatocytes by activating Nrf2/HO-1 signaling pathway, thus playing a protective role against CLP-induced liver injury.
Animals
;
Male
;
Rats
;
Actins/metabolism*
;
Chemical and Drug Induced Liver Injury, Chronic
;
Heme Oxygenase-1/metabolism*
;
Interleukin-6
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
RNA, Messenger
;
Sepsis/metabolism*
;
Signal Transduction
;
Sirtuin 1/metabolism*
;
Superoxide Dismutase/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
10.Enhanced heterologous expression of the cytochrome c from uncultured anaerobic methanotrophic archaea.
Lingwei CUI ; Xiaojun FAN ; Yanning ZHENG
Chinese Journal of Biotechnology 2022;38(1):226-237
Cytochrome c is a type of heme proteins that are widely distributed in living organisms. It consists of heme and apocytochrome c, and has potential applications in bioelectronics, biomedicine and pollutant degradation. However, heterologous overexpression of cytochrome c is still challenging. To date, expression of the cytochrome c from uncultured anaerobic methanotrophic archaea has not been reported, and nothing is known about the function of this cytochrome c. A his tagged cytochrome c was successfully expressed in E. coli by introducing a thrombin at the N-terminus of CytC4 and co-expressing CcmABCDEFGH, which is responsible for the maturation of cytochrome c. Shewanella oneidensis, which naturally has enzymes for cytochrome c maturation, was then used as a host to further increase the expression of CytC4. Indeed, a significantly higher expression of CytC4 was achieved in S. oneidensis when compared with in E. coli. The successful heterologous overexpression of CytC4 will facilitate the exploitation of its physiological functions and biotechnological applications.
Anaerobiosis
;
Archaea/metabolism*
;
Cytochromes c/metabolism*
;
Escherichia coli/metabolism*
;
Heme/metabolism*

Result Analysis
Print
Save
E-mail