1.Preparation and physicochemical properties of nano-silver acupuncture needles.
Wenfeng HAI ; Jiaxin LIU ; Yang LIU ; Tingfang BAI ; Xiaomei HAN ; Ying YING ; Suocai TONG ; Tegexi BAIYIN ; Yingsong CHEN
Chinese Acupuncture & Moxibustion 2025;45(5):568-576
OBJECTIVE:
To explore the preparation of nano-silver acupuncture needles and evaluate the appearance, structure and properties.
METHODS:
Stainless steel acupuncture needles were pretreated by polishing with sandpaper and cleaning with ultrapure water and absolute ethanol. As the working electrodes, the needles were placed in an electrolyte solution contained silver nitrate (AgNO3), potassium nitrate (KNO3), and polyvinylpyrrolidone (PVP); and the silver nanoparticles were deposited at a constant voltage of -0.2 V for 1 200 s. The heat-treatment was conducted at 600 ℃ for 15 min in an argon atmosphere to strengthen the adhesion between the nanoparticles and the substrate. The surface appearance and structure of nano-silver acupuncture needles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical conductivity, thermal conductivity and biocompatibility of the needles were evaluated. The cytotoxicity and biocompatibility of the sample were assessed using the CCK-8 assay. According to the national standard, Acupuncture Needles (GB 2024-2016), the other physicochemical performances of nano-silver acupuncture needles were tested.
RESULTS:
①By controlling the AgNO3 concentration and the molar ratio of AgNO3 to PVP, it was found that at an AgNO3 concentration of 2 mmol/L and a molar ratio of 5∶1, silver nanoparticles with the diameter of 50-100 nm, regular appearance, and uniform distribution were obtained. At a lower concentration, the size of silver nanoparticles was smaller and unevenly distributed particles, whereas a higher concentration tended to produce a dendritic structure. ②By sandpaper polishing, acid etching pretreatment, and heat-treatment at 600 ℃ under argon for 15 min, the adhesion of silver nanoparticles on the surface of the needle body was strengthened, and the simulated pig skin puncture test showed the intact coating without shedding. ③SEM found that the silver nanoparticles were uniformly deposited, forming a nanofilm approximately 1.5 μm thick; XRD analysis showed the diffraction peaks corresponding to cubic crystal silver (111), (200), (220) and (311); and XPS detected characteristic peaks of Ag 3d3/2 and Ag 3d5/2, confirming the successful deposition and good crystallinity of the silver nanoparticles. ④Resistivity measurements indicated that the nano-silver acupuncture needles exhibited a resistivity of approximately 0.15 Ω·cm, about three times lower than that of unmodified stainless steel needles. The infrared thermography demonstrated that their thermal conductivity was superior to that of traditional acupuncture needles. In vitro CCK-8 cytotoxicity assay showed that the nano-silver acupuncture needles had no adverse effects on human skin fibroblasts and possessed good biocompatibility. ⑤ The key parameters such as needle tip performance, hardness, and the adhesion between the needle body and handle were in compliance with the requirements in Acupuncture Needles (GB 2024-2016), ensuring a quality guarantee provided for clinical applications.
CONCLUSION
The preparation of nano-silver acupuncture needles effectively overcomes the insufficient toughness of traditional silver needles and improves the electrical and thermal conductivity of stainless acupuncture needles.
Silver/chemistry*
;
Needles
;
Acupuncture Therapy/instrumentation*
;
Metal Nanoparticles/chemistry*
;
Humans
;
Electric Conductivity
;
Animals
2.Ag2Se nanoparticles suppress growth of murine esophageal cancer allograft in mice by eliminating Porphyromonas gingivalis.
Yali ZHAO ; Jiayi LI ; Bianli GU ; Pan CHEN ; Li ZHANG ; Xiaoman ZHANG ; Pingjuan YANG ; Linlin SHI ; Shegan GAO
Journal of Southern Medical University 2025;45(2):245-253
OBJECTIVES:
To investigate the efficacy of Ag2Se nanoparticles for eliminating intracellular Porphyromonas gingivalis (P. gingivalis) in esophageal cancer and examine the effect of P. gingivalis clearance on progression of esophageal cancer.
METHODS:
Ag2Se nanoparticles were synthesized via a chemical synthesis method. The effects of Ag2Se nanoparticles on P. gingivalis viability and colony-forming ability were assessed using fluorescence staining and colony formation assays. In a mouse model bearing subcutaneous murine esophageal cancer cell allograft with P. gingivalis infection, the effect of treatment with Ag2Se nanoparticles on the abundance of P. gingivalis in the tumor tissues was quantified using RNAscope in situ hybridization and quantitative polymerase chain reaction (qPCR), and the changes in tumor volume were monitored. The biosafety of Ag2Se nanoparticles was assessed by examining liver and kidney functions and pathological changes in the major organs of the mice.
RESULTS:
Transmission electron microscopy revealed that the synthesized Ag2Se nanoparticles were uniformly dispersed spherical particles with a diameter around 50 nm. In vitro experiments demonstrated that exposure to Ag2Se nanoparticles significantly reduced the viability and clonal proliferation capacity of P. gingivalis in a dose-dependent manner. In the tumor-bearing mice, treatment with Ag2Se nanoparticles significantly reduced the abundance of P. gingivalis in tumor tissues and suppressed tumor cell proliferation. No significant damages to the liver and kidney functions or the major organs were observed in Ag2Se nanoparticle-treated mice, demonstrating good biocompatibility of Ag2Se nanoparticles.
CONCLUSIONS
Ag2Se nanoparticles exhibit significant bactericidal and inhibitory effects against P. gingivalis, and can effectively eliminate intracellular P. gingivalis to suppress the growth of esophageal cancer allograft in mice, suggesting the potential of Ag2Se nanoparticles in the treatment of esophageal cancer.
Animals
;
Porphyromonas gingivalis/drug effects*
;
Mice
;
Esophageal Neoplasms/pathology*
;
Nanoparticles
;
Metal Nanoparticles
;
Bacteroidaceae Infections
;
Cell Line, Tumor
3.Tongue squamous cell carcinoma-targeting Au-HN-1 nanosystem for CT imaging and photothermal therapy.
Ming HAO ; Xingchen LI ; Xinxin ZHANG ; Boqiang TAO ; He SHI ; Jianing WU ; Yuyang LI ; Xiang LI ; Shuangji LI ; Han WU ; Jingcheng XIANG ; Dongxu WANG ; Weiwei LIU ; Guoqing WANG
International Journal of Oral Science 2025;17(1):9-9
Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy. Nanoparticles with diagnostic and photothermal therapeutic properties may offer a new approach for the targeted therapy of TSCC. However, inadequate accumulation of photosensitizers at the tumor site diminishes the efficacy of photothermal therapy (PTT). This study modified gold nanodots (AuNDs) with the TSCC-targeting peptide HN-1 to improve the selectivity and therapeutic effects of PTT. The Au-HN-1 nanosystem effectively targeted the TSCC cells and was rapidly delivered to the tumor tissues compared to the AuNDs. The enhanced accumulation of photosensitizing agents at tumor sites achieved significant PTT effects in a mouse model of TSCC. Moreover, owing to its stable long-term fluorescence and high X-ray attenuation coefficient, the Au-HN-1 nanosystem can be used for fluorescence and computed tomography imaging of TSCC, rendering it useful for early tumor detection and accurate delineation of surgical margins. In conclusion, Au-HN-1 represents a promising nanomedicine for imaging-based diagnosis and targeted PTT of TSCC.
Tongue Neoplasms/diagnostic imaging*
;
Carcinoma, Squamous Cell/diagnostic imaging*
;
Animals
;
Gold/chemistry*
;
Mice
;
Photothermal Therapy/methods*
;
Tomography, X-Ray Computed
;
Photosensitizing Agents
;
Metal Nanoparticles
;
Humans
;
Cell Line, Tumor
4.Selenium nanoparticles synthesized by Streptomyces avermitilis: physical and chemical characteristics and inhibitory activity on a pathogen of Lycium barbarum.
Qi ZHANG ; Yani LI ; Rongjuan ZHOU ; Jiayuan QING ; Sijun YUE
Chinese Journal of Biotechnology 2025;41(2):693-705
Biosynthesized selenium nanoparticles (SeNPs) have attracted much attention because of their unique physical, chemical, and biological properties. The microbial reduction of selenium salts to SeNPs has great potential, while there is a lack of elite strains. In this study, we explored the reduction of Na2SeO3 by Streptomyces avermitilis into SeNPs. The colonies and hyphae of the strain and the synthesized SeNPs were characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, the inhibitory activity of SeNPs on Fusarium oxysporum, the main pathogen causing root rot of Lycium barbarum, was studied. The results showed that S. avermitilis converted Na2SeO3 into SeNPs and tolerated 300 mmol/L Na2SeO3, demonstrating strong tolerance. S. avermitilis synthesized spherical SeNPs in the cytoplasm, and most of SeNPs had a diameter of about 100 nm and were released by hyphal fracture. The SeNPs synthesized by S. avermitilis were amorphous, and their surfaces were dominated by C and Se, with the existence of O, N and other elements. SeNPs had functional groups such as -OH, C=O, C-N, and C-H, which were closely related to the stability and biological activity of SeNPs. The SeNPs synthesized by S. avermitilis showcased significant inhibitory activity on F. oxysporum, and 25.0 μmol/mL SeNPs showcased the inhibition rate of 77.61% and EC50 of 0.556 μmol/mL. In conclusion, S. avermitilis can tolerate high Na2SeO3 stress and mediate the synthesis of SeNPs. The synthesized SeNPs have good stability and strong inhibitory activity, demonstrating the potential application value in the preparation of SeNPs and the control of L. barbarum root rot.
Streptomyces/metabolism*
;
Fusarium/drug effects*
;
Lycium/microbiology*
;
Selenium/metabolism*
;
Nanoparticles/chemistry*
;
Plant Diseases/microbiology*
;
Metal Nanoparticles/chemistry*
;
Antifungal Agents/pharmacology*
5.Mechanisms and applications of microbial synthesis of metal nanoparticles.
Xinruo WANG ; Chaoning HU ; Yangyang WANG ; Aoqi SONG ; Rui TANG ; Feng LI ; Hao SONG
Chinese Journal of Biotechnology 2025;41(9):3387-3404
The rapid growth of electronic waste has led to the accumulation of large amounts of valuable metal elements in the environment, causing serious environmental pollution and resource wastage. Compared with pyrometallurgical and hydrometallurgical processes which often result in severe environmental pollution and carbon footprints, microbial synthesis of metal nanoparticles has emerged as a green and environmentally friendly metallurgical technology for recovering valuable metals from electronic waste. This paper first reviews the mechanisms of metal nanoparticle synthesis within different structural compartments of microbial cells. It then introduces the applications of microbially synthesized metal nanoparticles in fields such as environmental remediation, energy production, biocatalysis, and biomedicine. Finally, it discusses the development prospects of microbial synthesis of metal nanoparticles, including exploration of diverse microbial resources and synthesis pathways, yield enhancement, integration of new technologies, and industrialization, aiming to promote further research and application of microbial synthesis of metal nanoparticles.
Metal Nanoparticles/chemistry*
;
Bacteria/metabolism*
6.Silver nanoparticles-resistance of HeLa cell associated with its unusually high concentration of α-ketoglutarate and glutathione.
Heming CHEN ; Yujing HE ; Xueqing CHEN ; Fuchang DENG ; Zhisong LU ; Yingshuai LIU ; Huamao DU
Chinese Journal of Biotechnology 2023;39(10):4189-4203
Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.
Humans
;
Animals
;
Mice
;
HeLa Cells
;
Silver/pharmacology*
;
Ketoglutaric Acids/pharmacology*
;
Metal Nanoparticles
;
Anti-Bacterial Agents/pharmacology*
;
Glutathione
;
Microbial Sensitivity Tests
7.Droplet freeze-thawing system based on solid surface vitrification and laser rewarming.
Wenxin ZHU ; Ping'an PAN ; Yonghua HUANG ; Wei CHEN ; Sha HAN ; Zheng LI ; Jinsheng CHENG
Journal of Biomedical Engineering 2023;40(5):973-981
Ultra-rapid cooling and rewarming rate is a critical technical approach to achieve ice-free cells during the freezing and melting process. A set of ultra-rapid solid surface freeze-thaw visualization system was developed based on a sapphire flim, and experiments on droplet freeze-thaw were carried out under different cryoprotectant components, volumes and laser energies. The results showed that the cooling rate of 1 μL mixed cryoprotectant [1.5 mol/L propylene glycol (PG) + 1.5 mol/L ethylene glycol (EG) + 0.5 mol/L trehalose (TRE)] could be 9.2×10 3 °C/min. The volume range of 1-8 μL droplets could be vitrified. After comparing the proportions of multiple cryoprotectants, the combination of equal proportion mixed permeability protectant and trehalose had the best vitrification freezing effect and more uniform crystallization characteristics. During the rewarming operation, the heating curve of glassy droplets containing gold nanoparticles was measured for the first time under the action of 400-1 200 W laser power, and the rewarming rate was up to the order of 10 6 °C/min. According to the droplet images of different power rewarming processes, the laser power range for ice-free rewarming with micron-level resolution was clarified to be 1 400-1 600 W. The work of this paper simultaneously realizes the ultra-high-speed temperature ramp-up, transient visual observation and temperature measurement of droplets, providing technical means for judging the ice free droplets during the freeze-thaw process. It is conducive to promoting the development of ultra-rapid freeze-thaw technology for biological cells and tissues.
Freezing
;
Vitrification
;
Cryopreservation/methods*
;
Trehalose
;
Gold
;
Rewarming
;
Metal Nanoparticles
;
Cryoprotective Agents
;
Lasers
8.Preparation, properties and antibacterial applications of medical nano-metals and their oxides: a review.
Jiasheng ZUO ; Ying QIN ; Zuzhen ZHAO ; Lu XING ; Tian LIU ; Song WANG ; Weiqiang LIU
Chinese Journal of Biotechnology 2023;39(4):1462-1476
Antibiotics are playing an increasingly important role in clinical antibacterial applications. However, their abuse has also brought toxic and side effects, drug-resistant pathogens, decreased immunity and other problems. New antibacterial schemes in clinic are urgently needed. In recent years, nano-metals and their oxides have attracted wide attention due to their broad-spectrum antibacterial activity. Nano-silver, nano-copper, nano-zinc and their oxides are gradually applied in biomedical field. In this study, the classification and basic properties of nano-metallic materials such as conductivity, superplasticity, catalysis, and antibacterial activities were firstly introduced. Secondly, the common preparation techniques, including physical, chemical and biological methods, were summarized. Subsequently, four main antibacterial mechanisms, such as cell membrane, oxidative stress, DNA destruction and cell respiration reduction, were summarized. Finally, the effect of size, shape, concentration and surface chemical characteristics of nano-metals and their oxides on antibacterial effectiveness and the research status of biological safety such as cytotoxicity, genotoxicity and reproductive toxicity were reviewed. At present, although nano-metals and their oxides have been applied in medical antibacterial, cancer treatment and other clinical fields, some issues such as the development of green preparation technology, the understanding of antibacterial mechanism, the improvement of biosafety, and the expansion of application fields, require further exploration.
Oxides/chemistry*
;
Metal Nanoparticles/chemistry*
;
Anti-Bacterial Agents/chemistry*
;
Zinc
;
Copper
9.Highly Sensitive Poly-N-isopropylacrylamide Microgel-based Electrochemical Biosensor for the Detection of SARS-COV-2 Spike Protein.
Hao CHEN ; Zhi Yuan HOU ; Die CHEN ; Ting LI ; Yi Ming WANG ; Marcelo Andrade DE LIMA ; Ying YANG ; Zhen Zhong GUO
Biomedical and Environmental Sciences 2023;36(3):269-278
OBJECTIVE:
Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019 (COVID-19), a new, highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consequently, considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2.
METHODS:
In this study, a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein (S protein) in human saliva. The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid, and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication. The electrochemical performance of the sensor was evaluated through differential pulse voltammetry.
RESULTS:
Under optimal experimental conditions, the linear range of the sensor was 10 -13-10 -9 mg/mL, whereas the detection limit was 9.55 fg/mL. Furthermore, the S protein was instilled in artificial saliva as the infected human saliva model, and the sensing platform showed satisfactory detection capability.
CONCLUSION
The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein, indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
Humans
;
Microgels
;
Spike Glycoprotein, Coronavirus
;
COVID-19/diagnosis*
;
Gold
;
Metal Nanoparticles
;
SARS-CoV-2
10.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification

Result Analysis
Print
Save
E-mail