1.Calculated parameters for the diagnosis of Wilson disease.
Nada Syazana ZULKUFLI ; Pavai STHANESHWAR ; Wah-Kheong CHAN
Singapore medical journal 2023;64(3):188-195
INTRODUCTION:
The diagnosis of Wilson disease (WD) is plagued by biochemical and clinical uncertainties. Thus, calculated parameters have been proposed. This study aimed to: (a) compare the diagnostic values of non-caeruloplasmin copper (NCC), NCC percentage (NCC%), copper-caeruloplasmin ratio (CCR) and adjusted copper in WD; and (b) derive and evaluate a discriminant function in diagnosing WD.
METHODS:
A total of 213 subjects across all ages who were investigated for WD were recruited. WD was confirmed in 55 patients, and the rest were WD free. Based on serum copper and caeruloplasmin values, NCC, NCC%, CCR and adjusted copper were calculated for each subject. A function was derived using discriminant analysis, and the cut-off value was determined through receiver operating characteristic analysis. Classification accuracy was found by cross-tabulation.
RESULTS:
Caeruloplasmin, total copper, NCC, NCC%, CCR, adjusted copper and discriminant function were significantly lower in WD compared to non-WD. Discriminant function showed the best diagnostic specificity (99.4%), sensitivity (98.2%) and classification accuracy (99.1%). Caeruloplasmin levels <0.14 g/L showed higher accuracy than the recommended 0.20 g/L cut-off value (97.7% vs. 87.8%). Similarly, molar NCC below the European cut-off of 1.6 umol/L showed higher accuracy than the American cut-off of 3.9 umol/L (80.3% vs. 59.6%) (P < 0.001). NCC%, mass NCC, CCR and adjusted copper showed poorer performances.
CONCLUSION
Discriminant function differentiates WD from non-WD with excellent specificity, sensitivity and accuracy. Performance of serum caeruloplasmin <0.14 g/L was better than that of <0.20 g/L. NCC, NCC%, CCR and adjusted copper are not helpful in diagnosing WD.
Humans
;
Hepatolenticular Degeneration/diagnosis*
;
Copper/analysis*
;
Ceruloplasmin/metabolism*
;
Repressor Proteins
2.Analysis of GNAS gene variant in a Chinese pedigree affected with pseudohypoparathyroidism.
Qian LI ; Jia HUANG ; Xing DAI ; Jiahuan HE ; Congmin LI ; Yue WANG ; Hongyan LIU
Chinese Journal of Medical Genetics 2023;40(1):31-35
OBJECTIVE:
To explore the genetic etiology of a Chinese pedigree affected with pseudohypoparathyroidism.
METHODS:
Peripheral blood samples of the proband and his parents were collected and subjected to trio-whole exome sequencing (trio-WES). Candidate variants were verified among the pedigree and 50 randomly selected healthy individuals through analysis of restriction fragment length polymorphism. Short tandem repeat (STR) linkage analysis was used to verify the parental origin of the pathogenic variants.
RESULTS:
Trio-WES and Sanger sequencing showed that the proband and his mother had both harbored a c.121C>G (p.His41Asp) variant of the GNAS gene, which was not found in other family members and the 50 healthy controls. The variant was not found in international databases. Based on guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be likely pathogenic.
CONCLUSION
The novel c.121C>G variant of the GNAS gene probably underlay the disease in this pedigree. Above finding has enriched the spectrum of GNAS gene variants.
Female
;
Humans
;
Pedigree
;
East Asian People
;
Mothers
;
Exome Sequencing
;
Pseudohypoparathyroidism/genetics*
;
Mutation
;
China
;
Chromogranins/genetics*
;
GTP-Binding Protein alpha Subunits, Gs/genetics*
3.Preimplantation genetic testing for monogenic/single gene disorders in a family with Molybdenum co-factor deficiency.
Zhan LI ; Hong ZHOU ; Jinhui SHU ; Caizhu WANG ; Peng HUANG
Chinese Journal of Medical Genetics 2023;40(2):143-147
OBJECTIVE:
To carry out preimplantation genetic testing for monogenic/single gene disorders (PGT-M) for a Chinese family affected with Molybdenum co-factor deficiency due to pathogenic variant of MOCS2 gene.
METHODS:
A family with molybdenum co-factor deficiency who attended to the Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region in April 2020 was selected as the research subject. Trophoblast cells were biopsied from blastocysts fertilized by intracytoplasmic sperm injection. Embryos carrying the MOCS2 gene variant and chromosome copy number variation (CNV) of more than 4 Mb were detected by single-cell whole genome amplification, high-throughput sequencing and single nucleotide polymorphism typing. Embryos without or carrying the heterozygous variant and without abnormal chromosome CNV were transplanted. During mid-pregnancy, amniotic fluid sample was collected for prenatal diagnosis to verify the results of PGT-M.
RESULTS:
Eleven oocytes were obtained, among which three blastocysts were formed through culturing. Results of genetic testing suggested that one embryo was heterozygous for the maternally derived MOCS2 gene variant and without chromosomal CNV. Following embryo transfer, intrauterine singleton pregnancy was attained. Prenatal diagnosis by amniocentesis at 18 weeks of gestation revealed that the MOCS2 gene variant and chromosomal analysis results were both consistent with that of PGT-M, and a healthy male infant was born at 37+5 weeks of gestation.
CONCLUSION
PGT-M has helped the couple carrying the MOCS2 gene variant to have a healthy offspring, and may become an important method for couples carrying other pathogenic genetic variants.
Female
;
Humans
;
Pregnancy
;
Aneuploidy
;
China
;
DNA Copy Number Variations
;
Genetic Testing/methods*
;
Preimplantation Diagnosis/methods*
;
Metal Metabolism, Inborn Errors/genetics*
4.Wnt pathway inhibitors are upregulated in XLH dental pulp cells in response to odontogenic differentiation.
Elizabeth GUIRADO ; Cassandra VILLANI ; Adrienn PETHO ; Yinghua CHEN ; Mark MAIENSCHEIN-CLINE ; Zhengdeng LEI ; Nina LOS ; Anne GEORGE
International Journal of Oral Science 2023;15(1):13-13
X-linked hypophosphatemia (XLH) represents the most common form of familial hypophosphatemia. Although significant advances have been made in the treatment of bone pathology, patients undergoing therapy continue to experience significantly decreased oral health-related quality of life. The following study addresses this persistent oral disease by further investigating the effect of DMP1 expression on the differentiation of XLH dental pulp cells. Dental pulp cells were isolated from the third molars of XLH and healthy controls and stable transduction of full-length human DMP1 were achieved. RNA sequencing was performed to evaluate the genetic changes following the induction of odontogenic differentiation. RNAseq data shows the upregulation of inhibitors of the canonical Wnt pathway in XLH cells, while constitutive expression of full-length DMP1 in XLH cells reversed this effect during odontogenic differentiation. These results imply that inhibition of the canonical Wnt pathway may contribute to the pathophysiology of XLH and suggest a new therapeutic strategy for the management of oral disease.
Humans
;
Familial Hypophosphatemic Rickets
;
Wnt Signaling Pathway
;
Dental Pulp
;
Quality of Life
;
Cell Differentiation
5.Sclerostin antibody improves alveolar bone quality in the Hyp mouse model of X-linked hypophosphatemia (XLH).
Kelsey A CARPENTER ; Delia O ALKHATIB ; Bryan A DULION ; Elizabeth GUIRADO ; Shreya PATEL ; Yinghua CHEN ; Anne GEORGE ; Ryan D ROSS
International Journal of Oral Science 2023;15(1):47-47
X-linked hypophosphatemia (XLH) is a rare disease of elevated fibroblast growth factor 23 (FGF23) production that leads to hypophosphatemia and impaired mineralization of bone and teeth. The clinical manifestations of XLH include a high prevalence of dental abscesses and periodontal disease, likely driven by poorly formed structures of the dentoalveolar complex, including the alveolar bone, cementum, dentin, and periodontal ligament. Our previous studies have demonstrated that sclerostin antibody (Scl-Ab) treatment improves phosphate homeostasis, and increases long bone mass, strength, and mineralization in the Hyp mouse model of XLH. In the current study, we investigated whether Scl-Ab impacts the dentoalveolar structures of Hyp mice. Male and female wild-type and Hyp littermates were injected with 25 mg·kg-1 of vehicle or Scl-Ab twice weekly beginning at 12 weeks of age and euthanized at 20 weeks of age. Scl-Ab increased alveolar bone mass in both male and female mice and alveolar tissue mineral density in the male mice. The positive effects of Scl-Ab were consistent with an increase in the fraction of active (nonphosphorylated) β-catenin, dentin matrix protein 1 (DMP1) and osteopontin stained alveolar osteocytes. Scl-Ab had no effect on the mass and mineralization of dentin, enamel, acellular or cellular cementum. There was a nonsignificant trend toward increased periodontal ligament (PDL) attachment fraction within the Hyp mice. Additional PDL fiber structural parameters were not affected by Scl-Ab. The current study demonstrates that Scl-Ab can improve alveolar bone in adult Hyp mice.
Mice
;
Male
;
Female
;
Animals
;
Familial Hypophosphatemic Rickets/metabolism*
;
Bone and Bones/metabolism*
;
Tooth/metabolism*
;
Periodontal Ligament/metabolism*
6.Dental impact of anti-fibroblast growth factor 23 therapy in X-linked hypophosphatemia.
Elis J LIRA DOS SANTOS ; Kenta NAKAJIMA ; Julien PO ; Ayako HANAI ; Volha ZHUKOUSKAYA ; Martin BIOSSE DUPLAN ; Agnès LINGLART ; Takashi SHIMADA ; Catherine CHAUSSAIN ; Claire BARDET
International Journal of Oral Science 2023;15(1):53-53
Elevated fibroblast growth factor 23 (FGF23) in X-linked hypophosphatemia (XLH) results in rickets and phosphate wasting, manifesting by severe bone and dental abnormalities. Burosumab, a FGF23-neutralizing antibody, an alternative to conventional treatment (phosphorus and active vitamin D analogs), showed significant improvement in the long bone phenotype. Here, we examined whether FGF23 antibody (FGF23-mAb) also improved the dentoalveolar features associated with XLH. Four-week-old male Hyp mice were injected weekly with 4 or 16 mg·kg-1 of FGF23-mAb for 2 months and compared to wild-type (WT) and vehicle (PBS) treated Hyp mice (n = 3-7 mice). Micro-CT analyses showed that both doses of FGF23-mAb restored dentin/cementum volume and corrected the enlarged pulp volume in Hyp mice, the higher concentration resulting in a rescue similar to WT levels. FGF23-mAb treatment also improved alveolar bone volume fraction and mineral density compared to vehicle-treated ones. Histology revealed improved mineralization of the dentoalveolar tissues, with a decreased amount of osteoid, predentin and cementoid. Better periodontal ligament attachment was also observed, evidenced by restoration of the acellular cementum. These preclinical data were consistent with the retrospective analysis of two patients with XLH showing that burosumab treatment improved oral features. Taken together, our data show that the dentoalveolar tissues are greatly improved by FGF23-mAb treatment, heralding its benefit in clinics for dental abnormalities.
Humans
;
Male
;
Mice
;
Animals
;
Familial Hypophosphatemic Rickets/pathology*
;
Fibroblast Growth Factor-23
;
Retrospective Studies
;
Fibroblast Growth Factors/metabolism*
;
Bone and Bones/metabolism*
;
Phosphates/therapeutic use*
7.Analysis of clinical characteristics and ATP7A gene variants in a Chinese pedigree affected with Menkes disease.
Jia ZHANG ; Jing GAN ; Zuozhen YANG ; Jianjun WANG
Chinese Journal of Medical Genetics 2023;40(12):1504-1507
OBJECTIVE:
To explore the clinical characteristics and variants of ATP7A gene in a child with Menkes disease.
METHODS:
A child with Menkes disease diagnosed at the West China Second Hospital of Sichuan University and its family members in March 2022 was selected as the study subjects. Clinical manifestations and results of laboratory tests and genetic testing were summarized.
RESULTS:
The main manifestations of the child included seizures, global development delay, facial dysmorphism, sparse and curly hair, increased lactate and pyruvate, and significantly decreased cuprin. EEG showed frequent issuance of multifocal spikes, spines, polyspines (slow) and polymorphic slow waves. Multiple tortuous vascular shadows were observed on cranial MRI. Whole exome sequencing revealed that the child has harbored a hemizygous c.3076delA (p.ile1026*) variant of the ATP7A gene, which was inherited from his mother. The variant may lead to premature termination of protein translation. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as pathogenic (PVS1+PM2+PP4).
CONCLUSION
The c.3076delA (p.Ile1026*) variant of the ATP7A gene probably underlay the Menkes disease in this child. Above finding has provided evidence for clinical diagnosis. The significantly increased lactic acid and pyruvate can be used as a reference for the diagnosis and management of Menkes disease. Microscopic abnormalities in the hair of the carriers may also facilitate their diagnosis.
Child
;
Humans
;
Copper-Transporting ATPases/genetics*
;
East Asian People
;
Menkes Kinky Hair Syndrome/genetics*
;
Mutation
;
Pedigree
;
Peptide Fragments
;
Pyruvic Acid
8.Clinical and genetic analysis of three children with Menkes disease due to variants of ATP7A gene.
Zebing WANG ; Qiaomei CHEN ; You WANG ; Ling LIU ; Chengyan LI
Chinese Journal of Medical Genetics 2023;40(6):668-673
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of three children with Menkes disease.
METHODS:
Three children who had presented at the Children's Medical Center, the Affiliated Hospital of Guangdong Medical University from January 2020 to July 2022 were selected as the study subjects. Clinical data of the children were reviewed. Genomic DNA was extracted from peripheral blood samples of the children, their parents and sister of child 1. Whole exome sequencing (WES) was carried out. Candidate variants were verified by Sanger sequencing, copy number variation sequencing (CNV-seq), and bioinformatic analysis.
RESULTS:
Child 1 was a 1-year-and-4-month male, and children 2 and 3 were monozygotic twin males aged 1-year-and-10-month. The clinical manifestations of the three children have included developmental delay and seizures. WES showed that child 1 has harbored a c.3294+1G>A variant of the ATP7A gene. Sanger sequencing confirmed that his parents and sister did not carry the same variant, suggesting that it was de novo. Children 2 and 3 had carried a c.77266650_77267178del copy number variation. CNV-seq results showed that their mother has carried the same variant. By searching the HGMD, OMIM and ClinVar databases, the c.3294+1G>A was known to be pathogenic. No carrier frequency has been recorded in the 1000 Genomes, ESP, ExAC and gnomAD databases. Based on the Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics (ACMG), the ATP7A gene c.3294+1G>A variant was predicted to be pathogenic. The c.77266650_77267178del variant has involved exons 8 to 9 of the ATP7A gene. ClinGen online system score for it was 1.8, which was also considered to be pathogenic.
CONCLUSION
The c.3294+1G>A and c.77266650_ 77267178del variants of the ATP7A gene probably underlay the Menkes disease in the three children. Above finding has enriched the mutational spectrum of Menkes disease and provided a basis for clinical diagnosis and genetic counseling.
Humans
;
Male
;
Computational Biology
;
Copper-Transporting ATPases/genetics*
;
DNA Copy Number Variations
;
Exons
;
Menkes Kinky Hair Syndrome/genetics*
;
Mutation
;
Peptide Fragments
;
Seizures
;
Infant
9.Application of a low copper diet guidance based on food exchange portions in children with hepatolenticular degeneration.
Ying-Xiang CHEN ; Zheng-Qing QIU ; Jing SUN ; Yang LI ; Ying YANG
Chinese Journal of Contemporary Pediatrics 2023;25(6):612-618
OBJECTIVES:
To study the efficacy of a low-copper diet guidance based on food exchange portions in children with hepatolenticular degeneration.
METHODS:
A self-controlled study was conducted from July 2021 to June 2022, including 30 children under the age of 18 who were diagnosed with hepatolenticular degeneration and poorly controlled with a low-copper diet. During the medical visit, personalized low-copper diet guidance was provided to the children and their parents using a copper-containing food exchange table and a copper food exchange chart. During home care, compliance with the low-copper diet of the children was improved by recording dietary diaries and conducting regular follow-ups. The changes in 24-hour urine copper level, liver function indicators, and the low-copper diet knowledge of the children's parents were observed before and after the intervention, with no change in the original drug treatment.
RESULTS:
After 8, 16, and 24 weeks of intervention, the 24-hour urine copper level decreased significantly compared to before intervention (P<0.05). When compared to 8-week intervention, the urine copper level decreased significantly after 16 and 24 weeks of intervention. The 24-hour urine copper level after 24 weeks of intervention decreased significantly compared to 16 weeks of intervention (P<0.05).After 24 weeks of intervention, the alanine aminotransferase and aspartate aminotransferase levels decreased significantly compared to before intervention (P<0.05). Additionally, in 16 of the cases (53%), alanine aminotransferase and aspartate aminotransferase returned to normal levels. Following 8 weeks of intervention, the low-copper diet knowledge of the children's parents increased significantly (P<0.05).
CONCLUSIONS
A low-copper diet guidance based on food exchange portions can effectively decrease the urine copper level and improve liver function in children with hepatolenticular degeneration. Furthermore, it can increase the low-copper diet knowledge of the children's parents.
Humans
;
Child
;
Hepatolenticular Degeneration/therapy*
;
Alanine Transaminase
;
Copper
;
Food
;
Aspartate Aminotransferases
10.Value of serum fibroblast growth factor 23 in diagnosis of hypophosphatemic rickets in children.
Sha-Sha DONG ; Ruo-Chen CHE ; Bi-Xia ZHENG ; Ai-Hua ZHANG ; Chun-Li WANG ; Mi BAI ; Ying CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(7):705-710
OBJECTIVES:
To study the value of serum fibroblast growth factor 23 (FGF23) in the diagnosis of hypophosphatemic rickets in children.
METHODS:
A total of 28 children who were diagnosed with hypophosphatemic rickets in Children's Hospital of Nanjing Medical University from January 2016 to June 2021 were included as the rickets group. Forty healthy children, matched for sex and age, who attended the Department of Child Healthcare of the hospital were included as the healthy control group. The serum level of FGF23 was compared between the two groups, and the correlations of the serum FGF23 level with clinical characteristics and laboratory test results were analyzed. The value of serum FGF23 in the diagnosis of hypophosphatemic rickets was assessed.
RESULTS:
The rickets group had a significantly higher serum level of FGF23 than the healthy control group (P<0.05). In the rickets group, the serum FGF23 level was positively correlated with the serum alkaline phosphatase level (rs=0.38, P<0.05) and was negatively correlated with maximum renal tubular phosphorus uptake/glomerular filtration rate (rs=-0.64, P<0.05), while it was not correlated with age, height Z-score, sex, and parathyroid hormone (P>0.05). Serum FGF23 had a sensitivity of 0.821, a specificity of 0.925, an optimal cut-off value of 55.77 pg/mL, and an area under the curve of 0.874 in the diagnosis of hypophosphatemic rickets (P<0.05).
CONCLUSIONS
Serum FGF23 is of valuable in the diagnosis of hypophosphatemic rickets in children, which providing a theoretical basis for early diagnosis of this disease in clinical practice.
Child
;
Humans
;
Fibroblast Growth Factor-23
;
Fibroblast Growth Factors
;
Familial Hypophosphatemic Rickets/diagnosis*
;
Rickets, Hypophosphatemic/diagnosis*

Result Analysis
Print
Save
E-mail