1.Lowered expression of CCN5 in endometriotic tissues promotes proliferation, migration and invasion of endometrial stromal cells.
Hong CAI ; Mian LIU ; Miao Ling LIN ; Hong LI ; Lang SHEN ; Song QUAN
Journal of Southern Medical University 2022;42(1):86-92
OBJECTIVE:
To explore the expression of CCN5 in endometriotic tissues and its impact on proliferation, migration and invasion of human endometrial stromal cells (HESCs).
METHODS:
We collected ovarian endometriosis samples from 20 women receiving laparoscopic surgery and eutopic endometrium samples from 15 women undergoing IVF-ET for comparison of CCN5 expression. Cultured HESCs were transfected with a recombinant adenovirus Ad-CCN5 for CCN5 overexpression or with a CCN5-specific siRNA for knocking down CCN5 expression, and the changes of cell proliferation, migration and invasion were evaluated using CCK-8 assay, wound healing assay and Transwell chamber assay. RT-qPCR and Western blotting were used to examine the expression levels of epithelial-mesenchymal transition (EMT) markers including E-cadherin, N-cadherin, Snail-1 and vimentin in HESCs with CCN5 overexpression or knockdown.
RESULTS:
CCN5 expression was significantly decreased in ovarian endometriosis tissues as compared with eutopic endometrium samples (P < 0.01). CCN5 overexpression obviously inhibited the proliferation, migration and invasion of HESCs, significantly increased the expression of E-cadherin and decreased the expressions of N-cadherin, Snail-1 and vimentin (P < 0.01). CCN5 knockdown significantly enhanced the proliferation, migration and invasion of HESCs and produced opposite effects on the expressions of E-cadherin, N-cadherin, Snail-1 and vimentin (P < 0.01).
CONCLUSION
CCN5 can regulate the proliferation, migration and invasion of HESCs and thus plays an important role in EMT of HESCs, suggesting the potential of CCN5 as a therapeutic target for endometriosis.
Cell Movement
;
Cell Proliferation
;
Endometriosis/metabolism*
;
Endometrium/metabolism*
;
Epithelial Cells
;
Epithelial-Mesenchymal Transition
;
Female
;
Humans
;
Stromal Cells
2.Research Advances on the Role of Bone Marrow Stromal Cell in Acute Lymphoblastic Leukemia --Review.
Jun-Nan KANG ; Ze-Hui CHEN ; Chen TIAN
Journal of Experimental Hematology 2022;30(1):319-322
Acute lymphoblastic leukemia (ALL) is a kind of the most common hematopoietic malignancy, its recurrence and drug resistance are closely related to the bone marrow microenvironment. Bone marrow stromal cell (BMSC) is an important part of the bone marrow microenvironment and their interaction with leukemia cells cannot be ignored. BMSC participates in and regulate signaling pathways related to proliferation or apoptosis of ALL cells by secretes cytokines or extracellular matrix proteins, thus affecting the survival of ALL cells. In this review, the research advance of several signaling pathways of the interaction between BMSC and ALL cells was summarized briefly.
Apoptosis
;
Bone Marrow
;
Bone Marrow Cells
;
Humans
;
Mesenchymal Stem Cells
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
Stromal Cells
;
Tumor Microenvironment
3.Therapeutic Angiogenesis with Somatic Stem Cell Transplantation
Korean Circulation Journal 2020;50(1):12-21
Therapeutic angiogenesis is an important strategy to rescue ischemic tissues in patients with critical limb ischemia having no other treatment option such as endovascular angioplasty or bypass surgery. Studies indicated so far possibilities of therapeutic angiogenesis using autologous bone marrow mononuclear cells, CD34⁺ cells, peripheral blood mononuclear cells, adipose-derived stem/progenitor cells, and etc. Recent studies indicated that subcutaneous adipose tissue contains stem/progenitor cells that can give rise to several mesenchymal lineage cells. Moreover, these mesenchymal progenitor cells release a variety of angiogenic growth factors including vascular endothelial growth factor, fibroblast growth factor, hepatocyte growth factor and chemokine stromal cell-derived factor-1. Subcutaneous adipose tissues can be harvested by less invasive technique. These biological properties of adipose-derived regenerative cells (ADRCs) implicate that autologous subcutaneous adipose tissue would be a useful cell source for therapeutic angiogenesis in humans. In this review, I would like to discuss biological properties and future perspective of ADRCs-mediated therapeutic angiogenesis.
Angioplasty
;
Bone Marrow
;
Extremities
;
Fibroblast Growth Factors
;
Hepatocyte Growth Factor
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
Ischemia
;
Mesenchymal Stromal Cells
;
Stem Cell Transplantation
;
Stem Cells
;
Subcutaneous Fat
;
Vascular Endothelial Growth Factor A
4.Human Embryonic Stem Cells-Derived Mesenchymal Stem Cells Reduce the Symptom of Psoriasis in Imiquimod-Induced Skin Model
Chang Hyun KIM ; Chi Yeon LIM ; Ju Hee LEE ; Keun Cheon KIM ; Ji Yeon AHN ; Eun Ju LEE
Tissue Engineering and Regenerative Medicine 2019;16(1):93-102
BACKGROUND: Mesenchymal stem cells (MSCs) can be used for a wide range of therapeutic applications because of not only their differentiation potential but also their ability to secrete bioactive factors. Recently, several studies have suggested the use of human embryonic stem cell-derived MSCs (hE-MSCs) as an alternative for regenerative cellular therapy due to mass production of MSCs from a single donor. METHODS: We generated hE-MSCs from embryonic stem cell lines, SNUhES3, and analyzed immune properties of these cells. Also, we evaluated the in-vivo therapeutic potential of hE-MSCs in immune-mediated inflammatory skin disease. RESULTS: The cell showed the suppression of immunity associated with allogenic peripheral blood mononuclear cells in mixed lymphocyte response assay. We also detected that cytokines and growth factor related to the immune response were secreted from these cells. To assessed the in-vivo therapeutic potential of hE-MSCs in immune-mediated inflammatory skin disease, we used imiquimod (IMQ)-induced skin psoriasis mouse model. The score of clinical skin was significantly reduced in the hE-MSCs treated group compared with control IMQ group. In histological analysis, the IMQ-induced epidermal thickness was significantly decreased by hE-MSCs treatment. It was correlated with splenomegaly induced by IMQ which was also improved in the hE-MSCs. Moreover, IMQ-induced inflammatory cytokines; Th1 cytokines (TNF-α, IFN-α, IFN-γ,and IL-27) and Th17 cytokines (IL-17A and IL-23), in the serum and skin showed marked inhibition by hEMSCs. CONCLUSION: These results suggested that hE-MSCs have a potency of immune modulation in psoriasis, which might be the key factor for the improved psoriasis.
Animals
;
Cytokines
;
Embryonic Stem Cells
;
Humans
;
Lymphocytes
;
Mesenchymal Stromal Cells
;
Mice
;
Psoriasis
;
Skin Diseases
;
Skin
;
Splenomegaly
;
Tissue Donors
5.Induction of Chondrogenic Differentiation in Human Mesenchymal Stem Cells Cultured on Human Demineralized Bone Matrix Scaffold under Hydrostatic Pressure
Saeid Reza SHAHMORADI ; Maryam KABIR SALMANI ; Hamid Reza SOLEIMANPOUR ; Amir Hossein TAVAKOLI ; Kazem HOSAINI ; Nooshin HAGHIGHIPOUR ; Shahin BONAKDAR
Tissue Engineering and Regenerative Medicine 2019;16(1):69-80
BACKGROUND: Articular cartilage damage is still a troublesome problem. Hence, several researches have been performed for cartilage repair. The aim of this study was to evaluate the chondrogenicity of demineralized bone matrix (DBM) scaffolds under cyclic hydrostatic pressure (CHP) in vitro. METHODS: In this study, CHP was applied to human bone marrow mesenchymal stem cells (hBMSCs) seeded on DBM scaffolds at a pressure of 5 MPa with a frequency of 0.5 Hz and 4 h per day for 1 week. Changes in chondrogenic and osteogenic gene expressions were analyzed by quantifying mRNA signal level of Sox9, collagen type I, collagen type II, aggrecan (ACAN), Osteocalcin, and Runx2. Histological analysis was carried out by hematoxylin and eosin, and Alcian blue staining. Moreover, DMMB and immunofluorescence staining were used for glycosaminoglycan (GAG) and collagen type II detection, respectively. RESULTS: Real-time PCR demonstrated that applying CHP to hBMSCs in DBM scaffolds increased mRNA levels by 1.3-fold, 1.2-fold, and 1.7-fold (p < 0.005) for Sox9, Col2, and ACAN, respectively by day 21, whereas it decreased mRNA levels by 0.7-fold and 0.8-fold (p < 0.05) for Runx2 and osteocalcin, respectively. Additionally, in the presence of TGF-β1 growth factor (10 ng/ml), CHP further increased mRNA levels for the mentioned genes (Sox9, Col2, and ACAN) by 1.4-fold, 1.3-fold and 2.5-fold (p < 0.005), respectively. Furthermore, in histological assessment, it was observed that the extracellular matrix contained GAG and type II collagen in scaffolds under CHP and CHP with TGF-β1, respectively. CONCLUSION: The osteo-inductive DBM scaffolds showed chondrogenic characteristics under hydrostatic pressure. Our study can be a fundamental study for the use of DBM in articular cartilage defects in vivo and lead to production of novel scaffolds with two different characteristics to regenerate both bone and cartilage simultaneously.
Aggrecans
;
Alcian Blue
;
Bone Marrow
;
Bone Matrix
;
Cartilage
;
Cartilage, Articular
;
Collagen Type I
;
Collagen Type II
;
Eosine Yellowish-(YS)
;
Extracellular Matrix
;
Fluorescent Antibody Technique
;
Gene Expression
;
Hematoxylin
;
Humans
;
Hydrostatic Pressure
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Osteocalcin
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
6.GM-CSF Enhances Mobilization of Bone Marrow Mesenchymal Stem Cells via a CXCR4-Medicated Mechanism
Jiyoung KIM ; Na Kyeong KIM ; So Ra PARK ; Byung Hyune CHOI
Tissue Engineering and Regenerative Medicine 2019;16(1):59-68
BACKGROUND: This study was conducted to investigate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on the mobilization of mesenchymal stem cells (MSCs) from the bone marrow (BM) into the peripheral blood (PB) in rats. METHODS: GM-CSF was administered subcutaneously to rats at 50 µg/kg body weight for 5 consecutive days. The BM and PB of rats were collected at 1, 3, and 5 days during the administration for analysis. RESULTS: Upon GM-CSF administration, the number of mononuclear cells increased rapidly at day 1 both in the BM and PB. This number decreased gradually over time in the BM to below the initial amount by day 5, but was maintained at a high level in the PB until day 5. The colony-forming unit-fibroblasts were increased in the PB by 10.3-fold at day 5 of GM-CSF administration, but decreased in the BM. Compared to GM-CSF, granulocyte-colony stimulating factor (G-CSF) stimulated lower levels of MSC mobilization from the BM to the PB. Immunohistochemical analysis revealed that GM-CSF induced a hypoxic and proteolytic microenvironment and increased C-X-C chemokine receptor type 4 (CXCR4) expression in the BM. GM-CSF added to BM MSCs in vitro dose-dependently increased CXCR4 expression and cell migration. G-CSF and stromal cell derived factor-1 (SDF-1) showed similar results in these in vitro assays. Know-down of CXCR4 expression with siRNA significantly abolished GM-CSF- and G-CSF-induced MSC migration in vitro, indicating the involvement of the SDF-1-CXCR4 interaction in the mechanism. CONCLUSION: These results suggest that GM-CSF is a useful tool for mobilizing BM MSCs into the PB.
Animals
;
Anoxia
;
Body Weight
;
Bone Marrow
;
Cell Movement
;
Granulocyte Colony-Stimulating Factor
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Rats
;
RNA, Small Interfering
;
Stromal Cells
7.Conditioned Medium from Tonsil-Derived Mesenchymal Stem Cells Relieves CCl₄-Induced Liver Fibrosis in Mice
Yu Hee KIM ; Kyung Ah CHO ; Minhwa PARK ; Han Su KIM ; Joo Won PARK ; So Youn WOO ; Kyung Ha RYU
Tissue Engineering and Regenerative Medicine 2019;16(1):51-58
BACKGROUND: The liver is an organ with remarkable regenerative capacity; however, once chronic fibrosis occurs, liver failure follows, with high mortality and morbidity rates. Continuous exposure to proinflammatory stimuli exaggerates the pathological process of liver failure; therefore, immune modulation is a potential strategy to treat liver fibrosis. Mesenchymal stem cells (MSCs) with tissue regenerative and immunomodulatory potential may support the development of therapeutics for liver fibrosis. METHODS: Here, we induced hepatic injury in mice by injecting carbon tetrachloride (CCl₄) and investigated the therapeutic potential of conditionedmedium from tonsil-derivedMSCs (T-MSCCM). In parallel, we used recombinant human IL-1Ra,which, as we have previously shown, is secreted exclusively from T-MSCs and resolves the fibrogenic activation of myoblasts. Hepatic inflammation and fibrosis were determined by histological analyses using H&E and Picro-Sirius Red staining. RESULTS: The results demonstrated that T-MSC CM treatment significantly reduced inflammation as well as fibrosis in the CCl₄-injured mouse liver. IL-1Ra injection showed effects similar to T-MSC CM treatment, suggesting that T-MSC CM may exert anti-inflammatory and anti-fibrotic effects via the endogenous production of IL-1Ra. The expression of genes involved in fibrosis was evaluated, and the results showed significant induction of alpha-1 type I collagen, transforming growth factor beta, and tissue inhibitor of metalloproteases 1 upon CCl₄ injection, whereas treatment with T-MSC CM or IL-1Ra downregulated their expression. CONCLUSION: Taken together, these data support the therapeutic potential of T-MSC CM and/or IL-1Ra for the alleviation of liver fibrosis, as well as in treating diseases involving organ fibrosis.
Animals
;
Carbon Tetrachloride
;
Collagen Type I
;
Culture Media, Conditioned
;
Fibrosis
;
Humans
;
Inflammation
;
Interleukin 1 Receptor Antagonist Protein
;
Liver Cirrhosis
;
Liver Failure
;
Liver
;
Mesenchymal Stromal Cells
;
Metalloproteases
;
Mice
;
Mortality
;
Myoblasts
;
Transforming Growth Factor beta
8.Tissue Regeneration of Human Mesenchymal Stem Cells on Porous Gelatin Micro-Carriers by Long-Term Dynamic In Vitro Culture
LeTuyen NGUYEN ; Sumi BANG ; Insup NOH
Tissue Engineering and Regenerative Medicine 2019;16(1):19-28
BACKGROUND: Tissue engineering is a multidisciplinary field which attracted much attention in recent years. One of the most important issue in tissue engineering is how to obtain high cell numbers and tissue regeneration while maintaining appropriate cellular characteristics in vitro for restoring damaged or dysfunctional body tissues and organs. These demands can be achieved by the use of three dimensional (3D) dynamic cultures of cells combined with cell-adhesive micro-carriers. METHODS: In this study, human mesenchymal stem cells (hMSCs) were cultured in a wave-bioreactor system for up to 100 days, after seeding on Cultisphere-S porous gelatin micro-carriers. Cell counting was performed at the time points of 7, 12, 17, 31 days and compared to those of hMSCs cultured under static condition. Higher growth and proliferation rates was achieved in wave-type dynamic culture, when cell culture continued to day 31. A scanning electron microscope (SEM) photographs, both live and dead and MTT assays were taken to confirm the survival and distribution of cells on porous gelatin micro-carrier surfaces. The results of histological stains such as hematoxylin and eosin, Masson’s trichrome, Alcian blue and Alizarin red S also showed improved proliferation and tissue regeneration of hMSCs on porous gelatin micro-carriers. CONCLUSION: The experimental results demonstrated the effect and importance of both micro-carriers and bioreactor in hMSC expansion on cell proliferation and migration as well as extracellular matrix formation on the superficial and pore surfaces of the porous gelatin micro-carriers, and then their inter-connections, leading to tissue regeneration.
Alcian Blue
;
Bioreactors
;
Cell Count
;
Cell Culture Techniques
;
Cell Proliferation
;
Coloring Agents
;
Eosine Yellowish-(YS)
;
Extracellular Matrix
;
Gelatin
;
Hematoxylin
;
Humans
;
In Vitro Techniques
;
Mesenchymal Stromal Cells
;
Regeneration
;
Tissue Engineering
9.Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells
Jin Soo PARK ; Hyun Kuk KIM ; Eun Young KANG ; RyeonJin CHO ; Yeon Mok OH
Tuberculosis and Respiratory Diseases 2019;82(2):158-165
BACKGROUND: A recent study reported that mesenchymal stem cells possess potential cellular therapeutic properties for treating patients with chronic obstructive pulmonary disease, which is characterized by emphysema. We examined the potential therapeutic effect of Wharton's Jelly-derived mesenchymal stem cells (WJMSCs), following pretreatment with pioglitazone, in lung regeneration mouse emphysema models. METHODS: We used two mouse emphysema models, an elastase-induced model and a cigarette smoke-induced model. We intravenously injected WJMSCs (1×104/mouse) to mice, pretreated or not, with pioglitazone for 7 days. We measured the emphysema severity by mean linear intercepts (MLI) analysis using lung histology. RESULTS: Pioglitazone pretreated WJMSCs (pioWJMSCs) were associated with greater lung regeneration than non-augmented WJMSCs in the two mouse emphysema models. In the elastase-induced emphysema model, the MLIs were 59.02±2.42 µm (n=6), 72.80±2.87 µm (n=6), for pioWJMSCs injected mice, and non-augmented WJMSCs injected mice, respectively (p<0.01). Both pioWJMSCs and non-augmented WJMSCs showed regenerative effects in the cigarette smoke emphysema model (MLIs were 41.25±0.98 [n=6] for WJMSCs and38.97±0.61 µm [n=6] for pioWJMSCs) compared to smoking control mice (51.65±1.36 µm, n=6). The mean improvement of MLI appeared numerically better in pioWJMSCs than in non-augmented WJMSCs injected mice, but the difference did not reach the level of statistical significance (p=0.071). CONCLUSION: PioWJMSCs may produce greater lung regeneration, compared to non-augmented WJMSCs, in a mouse emphysema model.
Animals
;
Emphysema
;
Humans
;
Lung
;
Mesenchymal Stromal Cells
;
Mice
;
Pulmonary Disease, Chronic Obstructive
;
Regeneration
;
Smoke
;
Smoking
;
Tobacco Products
10.Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation.
Ana Patricia AYALA-CUELLAR ; Ji Houn KANG ; Eui Bae JEUNG ; Kyung Chul CHOI
Biomolecules & Therapeutics 2019;27(1):25-33
Mesenchymal stem cells are classified as multipotent stem cells, due to their capability to transdifferentiate into various lineages that develop from mesoderm. Their popular appeal as cell-based therapy was initially based on the idea of their ability to restore tissue because of their differentiation potential in vitro; however, the lack of evidence of their differentiation to target cells in vivo led researchers to focus on their secreted trophic factors and their role as potential powerhouses on regulation of factors under different immunological environments and recover homeostasis. To date there are more than 800 clinical trials on humans related to MSCs as therapy, not to mention that in animals is actively being applied as therapeutic resource, though it has not been officially approved as one. But just as how results from clinical trials are important, so is to reveal the biological mechanisms involved on how these cells exert their healing properties to further enhance the application of MSCs on potential patients. In this review, we describe characteristics of MSCs, evaluate their benefits as tissue regenerative therapy and combination therapy, as well as their immunological properties, activation of MSCs that dictate their secreted factors, interactions with other immune cells, such as T cells and possible mechanisms and pathways involved in these interactions.
Animals
;
Dinoprostone
;
Homeostasis
;
Humans
;
Immunomodulation*
;
In Vitro Techniques
;
Mesenchymal Stromal Cells*
;
Mesoderm
;
Multipotent Stem Cells
;
Regeneration*
;
Regenerative Medicine
;
T-Lymphocytes
;
Toll-Like Receptors

Result Analysis
Print
Save
E-mail