1.Current advances for bone regeneration based on tissue engineering strategies.
Rui SHI ; Yuelong HUANG ; Chi MA ; Chengai WU ; Wei TIAN
Frontiers of Medicine 2019;13(2):160-188
Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.
Animals
;
Bone Regeneration
;
Cell Differentiation
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells
;
cytology
;
Osteogenesis
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
2.NANOG Alleviates the Damage of Human Hair Follicle Mesenchymal Stem Cells Caused by H2O2 through Activation of AKT Pathway.
Jia Hong SHI ; Kui Yang ZUO ; Ying Yao ZHANG ; Bo WANG ; Xing HAN ; Ao Bo LIAN ; Jin Yu LIU
Biomedical and Environmental Sciences 2019;32(4):272-280
OBJECTIVE:
To explore the protective effect of NANOG against hydrogen peroxide (H2O2) -induced cell damage in the human hair follicle mesenchymal stem cells (hHF-MSCs).
METHODS:
NANOG was expressed from a lentiviral vector, pLVX-IRES-ZsGreen. NANOG hHF-MSCs and vector hHF-MSCs were treated with 400 μmol/L hydrogen peroxide (H2O2) for 2 h, the cell survival rate, cell morphology, ROS production, apoptosis and expression of AKT, ERK, and p21 were determined and compared.
RESULTS:
Our results showed that NANOG could activate AKT and upregulate the expression of p-AKT, but not p-ERK. When treated with 400 μmol/L H2O2, NANOG hHF-MSCs showed higher cell survival rate, lower ROS production and apoptosis, higher expression of p-AKT, higher ratio of p-AKT/AKT.
CONCLUSION
Our results suggest that NANOG could protect hHF-MSCs against cell damage caused by H2O2 through activating AKT signaling pathway.
Cell Survival
;
Drug Evaluation, Preclinical
;
Hair Follicle
;
cytology
;
Humans
;
Hydrogen Peroxide
;
Lentivirus
;
Mesenchymal Stem Cells
;
drug effects
;
metabolism
;
Nanog Homeobox Protein
;
metabolism
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Signal Transduction
3.Comparison of the Biological Functions between Human Bone Marrow Derived CD106 Mesenchymal Stem Cells and CD106 Subgroup.
Shi Hong LU ; Mei GE ; Ya Hong YOU ; Jia HUO ; Hao Yue LIANG ; Wen Ying YU ; Dong Lin YANG ; Si Zhou FENG ; Zhong Chao HAN
Acta Academiae Medicinae Sinicae 2019;41(4):443-451
Objective To analyze the differences in biological functions between bone marrow(BM)-derived CD106 mesenchymal stem cells(MSCs)and the CD106 subgroup. Methods The MSCs from normal BM were isolated and expanded.The subgroups of CD106 and CD106 MSCs were sorted.The cell proliferation and adhesion functions,chemotactic activities,adipogenic and osteogenic potentials,senescence,and senescence protein 21(p21)were detected.The capacity of translocation into nucleus of nuclear factor-kappa B(NF-κB)when stimulated by tumor necrosis factor(TNF-α)was measured. Results The proliferative ability was higher in CD106 MSCs than that in CD106 MSCs.In 48 hours,the value of optical density(OD)was significantly higher in CD106 MSCs than that in CD106 subgroup(1.004±0.028 0.659±0.023,=3.946,=0.0225).In 72 hours,this phenomenon was even more pronounced(2.574±0.089 1.590±0.074,=11.240,=0.0000).The adhesive capacity of CD106 MSCs was significantly stronger than that of CD106 subgroup(0.648±0.018 0.418±0.023,=7.869,=0.0002).Besides,the metastasis ability of CD106 MSCs were significantly stronger than that of CD106 subgroup(114.500±4.481 71.000±4.435,=6.900,=0.0005).The CD106 MSCs had signifcnatly lower proportions of senescent cells.The expression of aging protein p21 in CD106 MSCs was significantly lower than that in CD106 MSCs [(17.560±1.421)% (45.800±2.569)%,=9.618,=0.0000].Furthermore,there were no visible pigmenting cells after β-galactosidase staining in CD106 MSCs subgroup.However,in CD106 MSCs,some colored green cells were detected.The rate of NF-κB translocation into nucleus after stimulated by TNF-α was significantly higher in CD106 MSCs than CD106 MSCs [(37.780±3.268)% (7.30±1.25)%,=8.713,=0.0001]. Conclusion Bone marrow-derived CD106 MSCs possess more powerful biological functions than CD106 MSCs.
Bone Marrow Cells
;
cytology
;
Cell Adhesion
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
NF-kappa B
;
metabolism
;
Protein Transport
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Vascular Cell Adhesion Molecule-1
;
metabolism
4.MiR-1180 from bone marrow-derived mesenchymal stem cells induces glycolysis and chemoresistance in ovarian cancer cells by upregulating the Wnt signaling pathway.
Zhuo-Wei GU ; Yi-Feng HE ; Wen-Jing WANG ; Qi TIAN ; Wen DI
Journal of Zhejiang University. Science. B 2019;20(3):219-237
BACKGROUND:
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play an important role in cancer development and progression. However, the mechanism by which they enhance the chemoresistance of ovarian cancer is unknown.
METHODS:
Conditioned media of BM-MSCs (BM-MSC-CM) were analyzed using a technique based on microRNA arrays. The most highly expressed microRNAs were selected for testing their effects on glycolysis and chemoresistance in SKOV3 and COC1 ovarian cancer cells. The targeted gene and related signaling pathway were investigated using in silico analysis and in vitro cancer cell models. Kaplan-Merier survival analysis was performed on a population of 59 patients enrolled to analyze the clinical significance of microRNA findings in the prognosis of ovarian cancer.
RESULTS:
MiR-1180 was the most abundant microRNA detected in BM-MSC-CM, which simultaneously induces glycolysis and chemoresistance (against cisplatin) in ovarian cancer cells. The secreted frizzled-related protein 1 (SFRP1) gene was identified as a major target of miR-1180. The overexpression of miR-1180 led to the activation of Wnt signaling and its downstream components, namely Wnt5a, β-catenin, c-Myc, and CyclinD1, which are responsible for glycolysis-induced chemoresistance. The miR-1180 level was inversely correlated with SFRP1 mRNA expression in ovarian cancer tissue. The overexpressed miR-1180 was associated with a poor prognosis for the long-term (96-month) survival of ovarian cancer patients.
CONCLUSIONS
BM-MSCs enhance the chemoresistance of ovarian cancer by releasing miR-1180. The released miR-1180 activates the Wnt signaling pathway in cancer cells by targeting SFRP1. The enhanced Wnt signaling upregulates the glycolytic level (i.e. Warburg effect), which reinforces the chemoresistance property of ovarian cancer cells.
Adenosine Triphosphate/chemistry*
;
Adult
;
Aged
;
Bone Marrow Cells/cytology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cells, Cultured
;
Drug Resistance, Neoplasm/genetics*
;
Female
;
Flow Cytometry
;
Follow-Up Studies
;
Glycolysis
;
Humans
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs/genetics*
;
Middle Aged
;
Multivariate Analysis
;
Ovarian Neoplasms/genetics*
;
Up-Regulation
;
Wnt Signaling Pathway
5.Angiopoietin-1 Modified Human Umbilical Cord Mesenchymal Stem Cell Therapy for Endotoxin-Induced Acute Lung Injury in Rats.
Zhi Wei HUANG ; Ning LIU ; Dong LI ; Hai Yan ZHANG ; Ying WANG ; Yi LIU ; Le Ling ZHANG ; Xiu Li JU
Yonsei Medical Journal 2017;58(1):206-216
PURPOSE: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI. After the rats were sacrificed at 6 hours, 24 hours, 48 hours, 8 days, and 15 days post-injection of LPS, the serum, the lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested for analysis, respectively. RESULTS: Administration of fluorescence microscope confirmed the increased presence of UCMSCs in the injured lungs. The evaluation of UCMSCs and UCMSCs-Ang1 actions revealed that Ang1 overexpression further decreased the levels of the pro-inflammatory cytokines TNF-α, TGF-β1, and IL-6 and increased the expression of the anti-inflammatory cytokine IL-10 in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in wet/dry ratio, differential neutrophil counts, myeloperoxidase activity, and BALF. The rats treated by UCMSCs-Ang1 showed improved survival and lower ALI scores. CONCLUSION: UCMSCs-Ang1 could improve both systemic inflammation and alveolar permeability in ALI. UC-derived MSCs-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of ALI.
Acute Lung Injury/chemically induced/*therapy
;
Angiopoietin-1/*genetics
;
Animals
;
Bronchoalveolar Lavage Fluid
;
Cytokines/metabolism
;
Endotoxins
;
Genetic Therapy
;
Interleukin-10/metabolism
;
Interleukin-6/metabolism
;
Leukocyte Count
;
Lipopolysaccharides
;
Lung/metabolism
;
Male
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/metabolism
;
Neutrophils/metabolism
;
Rats
;
Transforming Growth Factor beta1/metabolism
;
Tumor Necrosis Factor-alpha/metabolism
;
Umbilical Cord/*cytology
6.The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells.
Qianqian LI ; Zewen GAO ; Ye CHEN ; Min-Xin GUAN
Protein & Cell 2017;8(6):439-445
Mesenchymal stem cells (MSCs) are progenitors of connective tissues, which have emerged as important tools for tissue engineering due to their differentiation potential along various cell types. In recent years, accumulating evidence has suggested that the regulation of mitochondria dynamics and function is essential for successful differentiation of MSCs. In this paper, we review and provide an integrated view on the role of mitochondria in MSC differentiation. The mitochondria are maintained at a relatively low activity level in MSCs, and upon induction, mtDNA copy number, protein levels of respiratory enzymes, the oxygen consumption rate, mRNA levels of mitochondrial biogenesis-associated genes, and intracellular ATP content are increased. The regulated level of mitochondrial ROS is found not only to influence differentiation but also to contribute to the direction determination of differentiation. Understanding the roles of mitochondrial dynamics during MSC differentiation will facilitate the optimization of differentiation protocols by adjusting biochemical properties, such as energy production or the redox status of stem cells, and ultimately, benefit the development of new pharmacologic strategies in regenerative medicine.
Adipogenesis
;
physiology
;
Animals
;
Cell Differentiation
;
physiology
;
Chondrogenesis
;
physiology
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
metabolism
;
Mitochondria
;
genetics
;
metabolism
;
Mitochondrial Proteins
;
genetics
;
metabolism
;
Osteogenesis
;
physiology
;
RNA
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Mitochondrial
;
Reactive Oxygen Species
;
metabolism
7.Effects of retinol on expressions of epidermal growth factor, stem cell factor, colony-stimulating factor 1 and leukemia inhibitory factor in human umbilical cord-derived mesenchymal stem cells.
Hua-Li ZHUO ; Li-Peng BAI ; Dan LIU ; Shu-Min YU ; Dan-Ting LI ; Qian LIU ; Pin SONG ; Sui-Zhong CAO ; Liu-Hong SHEN
Journal of Southern Medical University 2016;37(2):221-225
OBJECTIVETo investigate effects of retinol on the expressions of epidermal growth factor (EGF), stem cell factor (SCF), colony-stimulating factor 1 (CSF1) and leukemia inhibitory factor (LIF) in cultured human umbilical-derived mesenchymal stem cells (UCMSCs).
METHODSHuman UCMSCs were isolated from human umbilical cord and identified for immunophenotypes. The cells were then cultured in DMEM/F12 media supplemented with 12% fetal bovine serum (FBS), 12% FBS+1 µmol/L retinol, 15% knockout serum replacement (KSR) and 15% KSR+ 1 µmol/L retinol. The expressions of the cytokines EGF, SCF, CSF1 and LIF in the cells were detected using RT-PCR and ELISA.
RESULTSThe isolated cells exhibited characteristic immunophenotypes of human UCMSCs and expressed EGF, CSF1 and SCF at both mRNA and protein levels but not LIF protein. Retinol (1 µmol/L) significantly promoted the expressions of SCF and CSF1 at both mRNA and protein levels but did not result in changes of EGF and LIF expressions in human UCMSCs.
CONCLUSIONRetinol at the concentration of 1 µmol/L can promote expression of SCF and CSF1 in human UCMSCs in vitro.
Cell Differentiation ; Cells, Cultured ; EGF Family of Proteins ; metabolism ; Humans ; Immunophenotyping ; Leukemia Inhibitory Factor ; metabolism ; Macrophage Colony-Stimulating Factor ; metabolism ; Mesenchymal Stromal Cells ; drug effects ; metabolism ; Stem Cell Factor ; metabolism ; Umbilical Cord ; cytology ; Vitamin A ; pharmacology
8.Preclinical Study of Cell Therapy for Osteonecrosis of the Femoral Head with Allogenic Peripheral Blood-Derived Mesenchymal Stem Cells.
Qiang FU ; Ning Ning TANG ; Qian ZHANG ; Yi LIU ; Jia Chen PENG ; Ning FANG ; Li Mei YU ; Jin Wei LIU ; Tao ZHANG
Yonsei Medical Journal 2016;57(4):1006-1015
PURPOSE: To explore the value of transplanting peripheral blood-derived mesenchymal stem cells from allogenic rabbits (rPBMSCs) to treat osteonecrosis of the femoral head (ONFH). MATERIALS AND METHODS: rPBMSCs were separated/cultured from peripheral blood after granulocyte colony-stimulating factor mobilization. Afterwards, mobilized rPBMSCs from a second passage labeled with PKH26 were transplanted into rabbit ONFH models, which were established by liquid nitrogen freezing, to observe the effect of rPBMSCs on ONFH repair. Then, the mRNA expressions of BMP-2 and PPAR-γ in the femoral head were assessed by RT-PCR. RESULTS: After mobilization, the cultured rPBMSCs expressed mesenchymal markers of CD90, CD44, CD29, and CD105, but failed to express CD45, CD14, and CD34. The colony forming efficiency of mobilized rPBMSCs ranged from 2.8 to 10.8 per million peripheral mononuclear cells. After local transplantation, survival of the engrafted cells reached at least 8 weeks. Therein, BMP-2 was up-regulated, while PPAR-γ mRNA was down-regulated. Additionally, bone density and bone trabeculae tended to increase gradually. CONCLUSION: We confirmed that local transplantation of rPBMSCs benefits ONFH treatment and that the beneficial effects are related to the up-regulation of BMP-2 expression and the down-regulation of PPAR-γ expression.
Animals
;
Blood Cells/*cytology
;
Bone Morphogenetic Protein 2/genetics
;
*Cell- and Tissue-Based Therapy
;
Femur Head Necrosis/metabolism/*pathology/*therapy
;
Gene Expression Regulation
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/*cytology
;
Osteonecrosis/*pathology/*therapy
;
PPAR gamma/genetics
;
Rabbits
;
Transplantation, Homologous
9.The expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects in rabbits with bone marrow stem cells compounded with platelet-rich fibrin.
Chunmei ZHOU ; Shuhui LI ; Naikuli WENQIGULI ; Li YU ; Lu ZHAO ; Peiling WU ; Tuerxun NIJIATI
West China Journal of Stomatology 2016;34(2):130-135
OBJECTIVEWe explored the expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects by establishing animal models with a composite of autologous bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) to repair bone defects in the extraction sockets of rabbits.
METHODSA total of 36 two-month-old male New Zealand white rabbits were randomly divided into four groups, and the left mandibular incisors of all the rabbits were subjected to minimally invasive removalunder general anesthesia. BMSC-PRF compounds, single PRF, and single BMSC were implanted in Groups A, B, and C. No material was implanted in Group D (blank control). The animals were sacrificed at 4, 8 and 12 weeks after surgery, the bone defect was immediately drawn, and the bone specimens underwent surgery after four, eight, and twelve weeks, with three rabbits per time point. The expressions of Notch1 and Wnt3a in the repair process of the bone defect were measured via immunohistochemical and immunofluorescence detection.
RESULTSImmunohistochemistry showed that the expressions of Notch1 and Wnt3a in Groups A, B, and C were higher than that in Group D at the fourth and eighth week after operation (P<0.05). By contrast, the expressions of Notch1 and Wnt3a in Group D were higher than those in Groups A, B, and C at the twelfth week (P<0.05). Immunofluorescence showed that the expressions of both Notch1 and Wnt3a reached their peaks in the new bone cells of the bone defect after four weeks following surgery and gradually disappeared when the bone was repaired completely.
CONCLUSIONNotch1 and Wnt3a signaling molecules are expressed in the process of repairing bone defects using BMSC-PRF composites and can accelerate the healing by regulating the proliferation and differentiation of BMSCs. Moreover, the expressions of Notch and Wnt are similar, and a crosstalk between them may exist it.
Alveolar Bone Grafting ; methods ; Animals ; Blood Platelets ; Bone Marrow Cells ; cytology ; Bone Transplantation ; methods ; Bone and Bones ; abnormalities ; Cell Differentiation ; Fibrin ; administration & dosage ; Male ; Mesenchymal Stem Cell Transplantation ; methods ; Mesenchymal Stromal Cells ; Platelet-Rich Plasma ; Rabbits ; Random Allocation ; Receptor, Notch1 ; metabolism ; Tissue Engineering ; Wnt Signaling Pathway ; Wnt3A Protein ; metabolism ; Wound Healing
10.Comparsion between Intravenous Delivered Human Fetal Bone Marrow Mesenchymal Stromal Cells and Mononuclear Cells in the Treatment of Rat Cerebral Infarct.
Ai-Hua HUANG ; Ping-Ping ZHANG ; Bin ZHANG ; Bu-Qing MA ; Yun-Qian GUAN ; Yi-Dan ZHOU
Acta Academiae Medicinae Sinicae 2016;38(5):497-506
Objective To compare the effecacy of human mesenchymal stromal cell (hMSC) with human mononuclear cell (hMNC) in treating rat cerebral infarct.Methods The SD rat models of cerebral infarct were established by distal middle cerebral artery occlusion (dMCAO). Rats were divided into four groups: sham,ischemia vehicle,MSC,and MNC transplantation groups. For the transplantation group,1×10hMSCs or hMNCs were intravascularly transplanted into the tail vein 1 hour after the ischemia onset. The ischemia vehicle group received dMCAO surgery and intravascular saline injection 1,3,5,and 7 days after the ischemia onset,and then behavioral tests were performed. At 48 h after the ischemia onset,the abundance of Iba- 1,the symbol of activated microglia,was evaluated in the peri-ischemia striatum area; meanwhile,the neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in ipsilateral peri-ischemia striatum area were also measured. Results The relative infarct volume in ischemia vehicle group,hMSC group,and hMNC transplantation group were (37.85±4.40)%,(33.41±3.82)%,and (30.23±3.63)%,respectively. The infarct volumes of MSC group (t=2.100,P=0.034) and MNC group (t=2.109,P=0.0009) were significantly smaller than that of ischemia vehicle group,and that of MNC group was significantly smaller than that of MSC group (t=1.743,P=0.043). One day after transplantation,the score of ischemia vehicle group in limb placing test was (4.32±0.71)%,which was significantly lower than that in sham group (9.73±0.36)% (t=2.178,P=8.61×10). The scores of MSC and MNC group,which were (5.09±0.62)% (t=2.1009,P=0.024) and (5.90±0.68)% (t=2.1008,P=0.0001),respectively,were significantly higher than that of ischemia vehicle group; also,the score of MNC group was significantly higher than that of MSC group(t=2.1009,P=0.0165). The contralateral forelimb scores of MSC and MNC groups in beam walking test were (5.56±0.86)% (t=2.120,P=0.020) and (5.13±0.95)% (t=2.131,P=0.003),were both significantly lower than that of ischemia vehicle group [(6.47±0.61)%]. Three days after the transplantation,the limb placing test score of MNC group [(6.91±1.10)%] was significantly higher than that of ischemia vehicle group (5.80±0.82)% (t=2.110,P=0.027). The score of MSC group [(6.30±0.77)%] showed no statistic difference with that of ischemia vehicle group(t=2.101,P=0.199).The contralateral forelimb scores of MNC group in beam walking test [(4.34±0.58)%] was significantly lower than that of ischemia vehicle group [(5.31±0.65)%] (t=2.100,P=0.006) and MSC group [(4.92±0.53)%] (t=2.100,P=0.041); there was no statistic difference between MSC group and ischemia vehicle group (t=2.109,P=0.139). The relative abundance of Iba- 1 in sham,ischemia vehicle,MSC,and MNC groups was 1.00+0.00,1.72±0.21,1.23±0.08,and 1.48±0.06,respectively. The Iba-1 relative abundance of ischemia vehicle group was significantly higher than that of sham group (t=2.262,P=2.9×10). The Iba-1 relative abundances of both MSC (t=2.178,P=3.91×10)and MNC (t=2.200,P=0.007)groups were significantly lower than that of ischemia vehicle group. It was also significantly lower in MNC group than in MSC group also (t=2.120,P=7.09×10). Three days after transplantation,the BDNF and GDNF levels of MSC group,which were (531.127±73.176)pg/mg (t=2.109,P=0.003)and(127.780±16.733)pg/mg(t=2.100,P=2.76×10),respectively,were significantly higher than those of ischemia vehicle group,which were (401.988±89.006)pg/mg and (86.278±14.832) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (627.429±65.646)pg/mg (t=2.144,P=0.017) and (153.117±20.443)pg/mg (t=2.109,P=0.010),respectively,were all significantly higher than that of MSC group. At day 7,the BDNF and GDNF levels of MSC group,which were (504.776±83.282)pg/mg (t=2.101,P=0.005) and (81.641±11.019)pg/mg (t=2.100,P=0.002),respectively,were significantly higher than those of ischemia vehicle group,which were (389.257±70.440)pg/mg and (64.322±9.855) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (589.068±63.323)pg/mg (t=2.100,P=0.027) and (102.161±19.932)pg/mg (t=2.144,P=0.017),respectively,were all significantly higher than that of MSC group. Conclusions Both hMSC and hMNC are beneficial to the ischemia-damaged brain when they are intravascularly transplanted within 1 h after the onset of ischemia. The anti-inflammation ability and secretion of neurotrophic factors are the underlying mechanisms of the therapeutic effects. MNC is more effective than MSC in reducing infarct area and improving behaviors,which might be explained by the fact that MNC induces more GDNF and BDNF in brain than MSC.
Animals
;
Bone Marrow
;
Brain Ischemia
;
therapy
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Disease Models, Animal
;
Fetus
;
Glial Cell Line-Derived Neurotrophic Factor
;
metabolism
;
Humans
;
Infarction, Middle Cerebral Artery
;
therapy
;
Leukocytes, Mononuclear
;
cytology
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
cytology
;
Rats
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail