1.HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway.
Yuting XU ; Li ZHANG ; Dickson Kofi Wiredu OCANSEY ; Bo WANG ; Yilin HOU ; Rong MEI ; Yongmin YAN ; Xu ZHANG ; Zhaoyang ZHANG ; Fei MAO
Journal of Zhejiang University. Science. B 2022;23(5):423-431
As a group of nonspecific inflammatory diseases affecting the intestine, inflammatory bowel disease (IBD) exhibits the characteristics of chronic recurring inflammation, and was proven to be increasing in incidence (Kaplan, 2015). IBD induced by genetic background, environmental changes, immune functions, microbial composition, and toxin exposures (Sasson et al., 2021) primarily includes ulcerative colitis (UC) and Crohn's disease (CD) with complicated clinical symptoms featured by abdominal pain, diarrhea, and even blood in stools (Fan et al., 2021; Huang et al., 2021). UC is mainly limited to the rectum and the colon, while CD usually impacts the terminal ileum and colon in a discontinuous manner (Ordás et al., 2012; Panés and Rimola, 2017). In recent years, many studies have suggested the lack of effective measures in the diagnosis and treatment of IBD, prompting an urgent need for new strategies to understand the mechanisms of and offer promising therapies for IBD.
Chronic Disease
;
Colitis, Ulcerative/therapy*
;
Crohn Disease/epidemiology*
;
Diarrhea
;
Homeodomain Proteins
;
Humans
;
Inflammatory Bowel Diseases
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs
;
RNA, Long Noncoding
;
Recurrence
;
Umbilical Cord/cytology*
2.Loss of KDM4B impairs osteogenic differentiation of OMSCs and promotes oral bone aging.
Peng DENG ; Insoon CHANG ; Jiongke WANG ; Amr A BADRELDIN ; Xiyao LI ; Bo YU ; Cun-Yu WANG
International Journal of Oral Science 2022;14(1):24-24
Aging of craniofacial skeleton significantly impairs the repair and regeneration of trauma-induced bony defects, and complicates dental treatment outcomes. Age-related alveolar bone loss could be attributed to decreased progenitor pool through senescence, imbalance in bone metabolism and bone-fat ratio. Mesenchymal stem cells isolated from oral bones (OMSCs) have distinct lineage propensities and characteristics compared to MSCs from long bones, and are more suited for craniofacial regeneration. However, the effect of epigenetic modifications regulating OMSC differentiation and senescence in aging has not yet been investigated. In this study, we found that the histone demethylase KDM4B plays an essential role in regulating the osteogenesis of OMSCs and oral bone aging. Loss of KDM4B in OMSCs leads to inhibition of osteogenesis. Moreover, KDM4B loss promoted adipogenesis and OMSC senescence which further impairs bone-fat balance in the mandible. Together, our data suggest that KDM4B may underpin the molecular mechanisms of OMSC fate determination and alveolar bone homeostasis in skeletal aging, and present as a promising therapeutic target for addressing craniofacial skeletal defects associated with age-related deteriorations.
Aging
;
Cell Differentiation
;
Facial Bones/physiology*
;
Humans
;
Jumonji Domain-Containing Histone Demethylases/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis
;
Osteoporosis
3.In Vitro Evaluation of Human Demineralised Teeth Matrix on Osteogenic Differentiation of Gingival Mesenchymal Stem Cells
Dhanashree Deshpande ; Arvind Karikal ; Chethan Kumar ; Basavarajappa Mohana Kumar ; Veena Shetty
Archives of Orofacial Sciences 2022;17(2):247-258
ABSTRACT
The use of tooth-derived material as a scaffold has gained attention recently due to its ease of availability
and bioactive properties. Hence, the objective of this study was to determine in vitro interaction of human
gingival mesenchymal stem cells (hGMSCs) with human demineralised teeth matrix (hDTM) on osteogenic
potential with or without osteogenic inducers. The hGMSCs were established and characterised on their
morphology, proliferation, population doubling time (PDT), viability, colony-forming ability, expression of
cell surface markers and adipogenic differentiation. Further, the effect of hDTM on the biocompatibility
and osteogenic differentiation ability of hGMSCs was evaluated. The hGMSCs displayed a fibroblast-like
appearance and exhibited a greater proliferative activity. The cells showed > 91% viability, and PDT varied
between 39.34 hours and 62.59 hours. Further, hGMSCs indicated their propensity to form clusters/
colonies, and expressed the markers, such as CD29, CD44, CD73 and CD90, but were negative for CD34
and CD45. When treated with adipogenic induction medium, hGMSCs were able to exhibit the formation
of neutral lipid vacuoles. The hGMSCs cultured with hDTM did not show any cytotoxic changes including
morphology and viability. Mineralisation of calcium nodules was observed in hGMSCs when cultured in
osteogenic induction (OI) medium as an indication of osteogenesis. hGMSCs when cultured with hDTM
confirmed the presence of a mineralised matrix. Further, when the cells were cultured with hDTM along
with OI, they showed slightly enhanced differentiation into osteocytes. In conclusion, hGMSCs were shown
to be biocompatible with hDTM, and demonstrated their enhanced osteogenic potential in the presence of
hDTM and osteogenic supplements.
Mesenchymal Stem Cells
;
Dental Pulp--cytology
;
Dentin
4.In Vitro Evaluation of Human Demineralised Teeth Matrix on Osteogenic Differentiation of Gingival Mesenchymal Stem Cells
Dhanashree Deshpande ; Arvind Karikal ; Chethan Kumar ; Basavarajappa Mohana Kumar ; Veena Shetty
Archives of Orofacial Sciences 2022;17(2):247-258
ABSTRACT
The use of tooth-derived material as a scaffold has gained attention recently due to its ease of availability
and bioactive properties. Hence, the objective of this study was to determine in vitro interaction of human
gingival mesenchymal stem cells (hGMSCs) with human demineralised teeth matrix (hDTM) on osteogenic
potential with or without osteogenic inducers. The hGMSCs were established and characterised on their
morphology, proliferation, population doubling time (PDT), viability, colony-forming ability, expression of
cell surface markers and adipogenic differentiation. Further, the effect of hDTM on the biocompatibility
and osteogenic differentiation ability of hGMSCs was evaluated. The hGMSCs displayed a fibroblast-like
appearance and exhibited a greater proliferative activity. The cells showed > 91% viability, and PDT varied
between 39.34 hours and 62.59 hours. Further, hGMSCs indicated their propensity to form clusters/
colonies, and expressed the markers, such as CD29, CD44, CD73 and CD90, but were negative for CD34
and CD45. When treated with adipogenic induction medium, hGMSCs were able to exhibit the formation
of neutral lipid vacuoles. The hGMSCs cultured with hDTM did not show any cytotoxic changes including
morphology and viability. Mineralisation of calcium nodules was observed in hGMSCs when cultured in
osteogenic induction (OI) medium as an indication of osteogenesis. hGMSCs when cultured with hDTM
confirmed the presence of a mineralised matrix. Further, when the cells were cultured with hDTM along
with OI, they showed slightly enhanced differentiation into osteocytes. In conclusion, hGMSCs were shown
to be biocompatible with hDTM, and demonstrated their enhanced osteogenic potential in the presence of
hDTM and osteogenic supplements.
Mesenchymal Stem Cells
;
Dental Pulp--cytology
;
Dentin
5.Expression of Twist1, SIRT1, FGF2 and TGF-β3 genes and its regulatory effect on the proliferation of placenta, umbilical cord and dental pulp mesenchymal stem cells.
Yao TAN ; Yin DENG ; Keyou PENG ; Zhengzhou SUN ; Jianqiu HUANG ; Xuntong GU ; Fusheng ZHANG ; Hanqing PENG ; Xuechao ZHANG ; Rong ZHANG
Chinese Journal of Medical Genetics 2021;38(2):117-122
OBJECTIVE:
To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-β3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs).
METHODS:
The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-β3.
RESULTS:
The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-β3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-β3 was observed in PA-MSCs, UC-MSCs and DP-MSCs.
CONCLUSION
Up-regulated expression of the Twist1, SIRT1 and TGF-β3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-β3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-β3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.
Cell Differentiation
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Dental Pulp/cytology*
;
Female
;
Fibroblast Growth Factor 2/genetics*
;
Humans
;
Mesenchymal Stem Cells/cytology*
;
Nuclear Proteins/genetics*
;
Placenta/cytology*
;
Pregnancy
;
Sirtuin 1/genetics*
;
Transforming Growth Factor beta3/genetics*
;
Twist-Related Protein 1/genetics*
;
Umbilical Cord/cytology*
6.Mesenchymal stem cells in the treatment of COVID-19-progress and challenges.
Jiayi WANG ; Wei ZOU ; Jing LIU
Chinese Journal of Biotechnology 2020;36(10):1970-1978
At present, SARS-CoV-2 is raging, and novel coronavirus pneumonia (COVID-19) has caused more than 35 million confirmed patients and more than 500 000 cases death, which seriously endanger human health, socioeconomic development, as well as global medical and public health systems. COVID-19 is highly contagious, has a long incubation period, and causes many death cases due to lack of effective specific treatment. Mesenchymal stem cells have powerful anti-inflammatory and immunoregulatory functions, and can effectively reduce the cytokine storm caused by coronavirus in patients, and improve the pulmonary fibrosis of patients, promote the repair of damaged lung tissue, and reduce the mortality. Currently, a number of related clinical trials of mesenchymal stem cell treatment of COVID-19 have been conducted, and have confirmed the safety and efficacy, suggesting a good clinical application prospect. While progress has been made in mesenchymal stem cell therapy for COVID-19, we should also catch sight of the problems and challenges faced by mesenchymal stem cell clinical trials under severe epidemic situation, including clinical trials design, stem cell quality management, and ethics in treatment. Only by paying attention to these can we guarantee the safe and effective development of mesenchymal stem cell clinical trials in the treatment of COVID-19.
Betacoronavirus
;
COVID-19
;
Clinical Trials as Topic
;
Coronavirus Infections/therapy*
;
Humans
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Pandemics
;
Pneumonia, Viral/therapy*
;
SARS-CoV-2
7.Mesenchymal stem cells in therapy of coronavirus disease 2019 - a review.
Xiaodong SHI ; Lijia YU ; Chunguang DING
Chinese Journal of Biotechnology 2020;36(10):1979-1991
Coronavirus disease 2019 (COVID-19) has spread widely on a large scale in the whole world at present, seriously endangering human health. There are still no effective and specific drugs, so it is urgent to find safe and effective therapeutic methods. Mesenchymal stem cells (MSCs) have many biological functions of powerful immunomodulation and tissue repair and regeneration. As a stem cell therapy, it has the potential to reduce the tissue injury and mortality in severe patients infected with novel coronavirus. At present, many research institutions in China and abroad have started a number of clinical research projects about MSCs in the treatment of COVID-19. In addition, those projects have initially confirmed the safety and effectiveness of this therapy. Therefore, this research field has been proved to have a very good clinical therapy prospect.
Betacoronavirus
;
COVID-19
;
China
;
Coronavirus Infections/therapy*
;
Humans
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Pandemics
;
Pneumonia, Viral/therapy*
;
SARS-CoV-2
8.PPP3CA silence regulates MET process, cell apoptosis, proliferation and migration in metanephric mesenchyme cells.
Yuping GU ; Lei CHEN ; Qianyin LI
Chinese Journal of Biotechnology 2020;36(10):2151-2161
Kidney is one of the most important organs of the body and the mammalian kidney development is essential for kidney unit formation. The key process of kidney development is metanephric development, where mesenchymal-epithelial transition (MET) plays a crucial role. Here we investigated the biological function of PPP3CA in metanephric mesenchyme (MM) cells. qRT-PCR and Western blotting were used to detect PPP3CA and MET makers expression in mK3, mK4 cells respectively at mRNA and protein level. Subsequently, PPP3CA was stably knocked down via lentivirus infection in mK4 cells. Flow cytometry, EdU/CCK-8 assay, wound healing assay were conducted to clarify the regulation of PPP3CA on cell apoptosis, proliferation and migration respectively. PPP3CA was expressed higher in epithelial-like mK4 cells than mesenchyme-like mK3 cells. Thus, PPP3CA was silenced in mK4 cells and PPP3CA deficiency promoted E-cadherin expression, cell apoptosis. Moreover, PPP3CA knock down attenuated cell proliferation and cell migration in mK4 cell. The underlying mechanism was associated with the dephosphorylation of PPP3CA on ERK1/2. Taken together, our results indicated that PPP3CA mediated MET process and cell behaviors of MM cells, providing new foundation for analyzing potential regulator in kidney development process.
Animals
;
Apoptosis/genetics*
;
Cell Line
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Silencing
;
Mesenchymal Stem Cells/cytology*
;
Mesoderm
;
Mice
9.Therapeutic Effect of SPK1 Gene Transfected Adipose Derived Mesenchymal Stem Cells on Experimental Autoimmune Encephalomyelitis Mice and Its Effect on T Helper Cell 17/Regulatory T Cells Balance.
Tao ZHOU ; Chao Ping XU ; Ying XIAO ; Qian ZHANG ; Li LI
Acta Academiae Medicinae Sinicae 2020;42(6):755-765
Objective To investigate the therapeutic effect of SPK1 gene transfected adipose derived mesenchymal stem cells(ADMSC)on experimental autoimmune encephalomyelitis mice and the effect on T helper cell 17(Th17)/regulatory T(Treg) cells balance. Methods EAE was induced by myelin oligodendrocyte glycoprotein 35-55 in mice.Totally 44 mice were randomly divided into four groups:normal control group(NC group),model group(EAE group),ADMSC group,and ADMSC-SPK1 group.Forty days after injection,the pathological changes of brain and spinal cord,Th17/Treg-related inflammatory markers in brain tissue,expressions of interleukin-17A(IL-17A)and forkhead box protein p3(Foxp3)in brain and spinal cord tissue,and flow cytometric results of spleen immune cells were detected. Results Forty days after the injection,serious inflammatory cell infiltration and demyelination occurred in the brain and spinal cord of EAE group,whereas demyelination and axonal injury were improved in ADMSC group and ADMSC-SPK1 group.Compared with EAE group,the ADMSC group and ADMSC-SPK1 group had significantly improved levels of IL-17A(
Adipose Tissue/cytology*
;
Animals
;
Cytokines
;
Encephalomyelitis, Autoimmune, Experimental/therapy*
;
Interleukin-17
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred C57BL
;
Phosphotransferases (Alcohol Group Acceptor)/genetics*
;
T-Lymphocytes, Regulatory/cytology*
;
Th17 Cells/cytology*
;
Transfection
10.Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transition.
Jing YANG ; Huazhong HU ; Shuqin ZHANG ; Linrui JIANG ; Yuanxiong CHENG ; Haojun XIE ; Xiaoyan WANG ; Jiaohua JIANG ; Hong WANG ; Qun ZHANG
Journal of Zhejiang University. Medical sciences 2020;40(7):988-994
OBJECTIVE:
To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.
METHODS:
Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.
RESULTS:
Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.
CONCLUSIONS
hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.
Animals
;
Epithelial-Mesenchymal Transition
;
Exosomes
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
Mice
;
Pulmonary Fibrosis
;
therapy
;
Transforming Growth Factor beta1
;
genetics
;
Umbilical Cord
;
cytology


Result Analysis
Print
Save
E-mail