1.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa 
		                			
		                			Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
		                        		
		                        			
		                        			 Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of 
		                        		
		                        	
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
3.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
		                        		
		                        			
		                        			 Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC. 
		                        		
		                        		
		                        		
		                        	
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
6.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
		                        		
		                        			
		                        			 Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC. 
		                        		
		                        		
		                        		
		                        	
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
8.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
		                        		
		                        			
		                        			 Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC. 
		                        		
		                        		
		                        		
		                        	
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
10.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
		                        		
		                        			
		                        			ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail