1.Analysis of regulation of prognosis,immune infiltration,and ferroptosis in sarcoma based on stemness index model
Jingxian WEI ; Lian MENG ; Hao SUN ; Tiantian ZHANG ; Chunxia LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):4151-4160
		                        		
		                        			
		                        			BACKGROUND:The stemness index may be associated with the prognosis and immune infiltration of sarcoma,but the specific regulatory mechanism and characteristic genes have yet to be fully elucidated. OBJECTIVE:To investigate the correlation between stem cells and prognosis as well as immune infiltration in sarcoma employing the gene stemness index model and to identify the ferroptosis signature genes associated with sarcoma stem cells. METHODS:The sarcoma RNA sequencing data and related clinical information were obtained from the Cancer Genome Atlas(TCGA).The sarcoma RNA sequencing data were grouped using the sarcoma stemness index.Survival data were used to analyze prognosis between groups.Differentially expressed genes were obtained for pathway enrichment and immune infiltration analysis.Ferroptosis-related differential genes were used to construct a protein interaction network and analyze prognostic correlation.Rhabdomyosarcoma cell lines were cultured and divided into adherent cell group and stem cell group.The adherent cell group received no intervention,while the stem cell group was treated with serum-free culture to enrich stem cells in rhabdomyosarcoma cells.qRT-PCR was used to evaluate stemness markers,ferroptosis-related genes,and mRNA expression of ferroptosis-related markers in the cells. RESULTS AND CONCLUSION:(1)Patients were divided into high and low stemness index groups based on the median stemness index.The progression-free survival of patients in the high stemness index group was lower than that in the low stemness index group by disease risk prediction,suggesting poor prognosis.(2)According to GO and KEGG analysis,the groups with high and low stemness indices differed from one another.There were differences in immune infiltration between the high and low stemness index groups.Nine of the 23 ferroptosis-related genes in the differential genes have the potential to establish a highly correlated network of protein interactions.Patients with high expression of IDO1,IFNG,and AQP5 have a better prognosis,while those with high expression of CA9 have a poor prognosis.(3)The qRT-PCR results demonstrated a significant upregulation of stem cell-related markers NANOG,SOX2,and OCT4 mRNA expressions in the stem cell group compared to the adherent cell group(P<0.05).Compared to the adherent cell group,the stem cell group exhibited decreased mRNA expression level of ferroptosis-related marker SLC7A11(P<0.05)while showing increased levels of ACSL4,GPX4,FTH1,and COX2(P<0.05).Compared to the adherent cell group,the stem cell group displayed decreased mRNA expression level of differentially expressed gene CA9 alongside elevated levels of IDO1,IFNG,and AQP5(P<0.05).Stem cells were strongly associated with sarcoma survival and ferroptosis by bioinformatics analysis and experimental verification.Sarcoma stem cells have aberrant expression of CA9,IDO1,IFNG,and AQP5,which may serve as new targets for sarcoma therapy as well as diagnostic indicators.
		                        		
		                        		
		                        		
		                        	
2.Danggui Shaoyaosan Regulates Nrf2/SLC7A11/GPX4 Signaling Pathway to Inhibit Ferroptosis in Rat Model of Non-alcoholic Fatty Liver Disease
Xinqiao CHU ; Yaning BIAO ; Ying GU ; Meng LI ; Tiantong JIANG ; Yuan DING ; Xiaping TAO ; Shaoli WANG ; Ziheng WEI ; Zhen LIU ; Yixin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):35-42
		                        		
		                        			
		                        			ObjectiveTo investigate the effect of Danggui Shaoyaosan on ferroptosis in the rat model of non-alcoholic fatty liver disease (NAFLD) and explore the underlying mechanism based on the nuclear factor E2-related factor 2 (Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe sixty SD rats were randomly grouped as follows: control, model, Yishanfu (0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, and 9.76 g·kg-1, respectively) Danggui Shaoyaosan. A high-fat diet was used to establish the rat model of NAFLD. After 12 weeks of modeling, rats were treated with corresponding agents for 4 weeks. Then, the body weight and liver weight were measured, and the liver index was calculated. At the same time, serum and liver samples were collected. The levels or activities of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fe2+ in the serum and TC, TG, free fatty acids (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), and Fe2+ in the liver were measured. Hematoxylin-eosin staining and oil red O staining were employed to observe the pathological changes in the liver. Immunofluorescence was used to assess the reactive oxygen species (ROS) content in the liver. Mitochondrial morphology was observed by transmission electron microscopy. The protein levels of Nrf2, SLC7A11, GPX4, transferrin receptor 1 (TFR1), and divalent metal transporter 1 (DMT1) in the liver were determined by Western blot. ResultsCompared with the control group, the model group showed increases in the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), and decreases in the activities of SOD, GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.05, P<0.01). Meanwhile, the liver tissue in the model group presented steatosis, iron deposition, mitochondrial shrinkage, and blurred or swollen mitochondrial cristae. Compared with the model group, all doses of Danggui Shaoyaosan reduced the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), while increasing the activities of SOD and GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.01). Furthermore, Danggui Shaoyaosan alleviated steatosis, iron deposition, and mitochondrial damage in the liver. ConclusionDanggui Shaoyaosan may inhibit lipid peroxidation and ferroptosis by activating the Nrf2/SLC7A11/GPX4 signaling pathway to treat NAFLD. 
		                        		
		                        		
		                        		
		                        	
3.Modern Clinical Application and Mechanism of Action of Chaihu Guizhi Ganjiangtang: A Review
Miaomiao MENG ; Zibo YUAN ; Kaili CHEN ; Jun ZHANG ; Zixuan YU ; Wei DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):266-277
		                        		
		                        			
		                        			Chaihu Guizhi Ganjiangtang (CGG)is a classic prescription in the Treatise on Cold Damage,which has the effects of clearing and relieving stagnation heat in Shaoyang,warming and dissolving water drink,and relieving the pivot mechanism. It is a classic prescription for treating spleen deficiency and liver depression and stopping internal stagnation caused by water drink. The formula is exquisite and well-matched and is often modified and used by ancient and modern medical practitioners to treat various miscellaneous diseases of internal and external medicine,with significant therapeutic effects. In recent years,with the rapid development of modern pharmacology,research on the micro mechanism of CGG has been continuously developed and deepened,providing new ideas for the treatment of diseases with CGG. Therefore,the authors systematically searched databases such as China National Knowledge Infrastructure,Wanfang Data Knowledge Service Platform,VIP Database, and PubMed for literature on the clinical application and pharmacological mechanism of CGG published by Chinese and foreign scholars in recent years. This article summarized the literature from two aspects:the modern clinical application and mechanism of action of CGG and elaborated on the diseases treated by CGG in modern literature,involving digestive system,respiratory system,nervous system,endocrine system,circulatory system,urinary system,gynecology,as well as its application in reducing the side effects of radiotherapy and chemotherapy, gynecology, dermatology, ophthalmology, and orthopedics. At the same time,the mechanism of CGG in treating diseases may be related to anti-inflammatory,anti-oxidative stress, regulation of immunity, anti-fibrosis, anti-tumor, improvement of gastrointestinal flora and motility, protection of liver tissue, reduction of blood lipids and blood sugar, and regulation of hormone levels. 
		                        		
		                        		
		                        		
		                        	
4.Engineering of mesenchymal stem cell-derived exosomes and their application progress in the field of oral medicine
ZHAO Yunfeng ; LIU Qian ; LI Meng ; LI Luying ; ZHANG Wei ; HU Xiantong ; MA Chufan
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(9):792-800
		                        		
		                        			
		                        			In recent years, mesenchymal stem cell-derived exosomes (MSC-EXO) have garnered increasing attention in the field of stomatology and have become an established research area in biomedical research. This article reviews the engineering of exosomes derived from mesenchymal stem cells and their application in the field of stomatology, in order to provide new ideas for the development of stomatology. Exosomes are nanoscale membrane vesicles secreted by cells and contain a variety of proteins, RNAs, lipids, and other biomolecules. They are transported through the circulatory system and can interact with other cells to regulate their biological behavior and participate in a variety of physiological and pathological processes. In the treatment of oral diseases, exosomes have shown great potential due to their natural biological activity and versatility. However, studies have found that relying solely on the function of natural exosomes may not fully meet the complex clinical requirements. Therefore, the concept of engineered exosomes has emerged. Engineered exosomes can be modified by bioengineering technology to enhance their targeting, allowing them to reach the lesion site more accurately. At the same time, engineered exosomes can also be surface modified or loaded internally to carry specific therapeutic molecules, such as drugs, gene editing tools or signaling molecules to improve the therapeutic effect. In addition, this engineered treatment can also confer greater stability to exosomes, making them better able to resist clearance by the immune system when circulating in the body, extending their half-life, and improving the effectiveness of treatment. Although engineered exosomes have attracted extensive attention in the fields of stomatology and other fields, their application is still mainly in the stage of basic research. To promote the clinical application of engineered exosomes, it is necessary to provide more sufficient evidence of biocompatibility and clarify their therapeutic effect and mechanism.
		                        		
		                        		
		                        		
		                        	
5.A preliminary study on developing statistical distribution table of hearing threshold deviation for otologically normal Chinese adults
Linjie WU ; Yang LI ; Haiying LIU ; Anke ZENG ; Jinzhe LI ; Wei QIU ; Hua ZOU ; Meng YE ; Meibian ZHANG
Journal of Environmental and Occupational Medicine 2025;42(7):800-807
		                        		
		                        			
		                        			background Current assessment of noise-induced hearing loss relies on the hearing threshold statistical distribution table of ISO 7029-2017 standard (ISO 7029), which is based on foreign population data and lacks a hearing threshold distribution table derived from pure-tone audiometry data of the Chinese population, hindering accurate evaluation of hearing loss in this group. Objective To establish a statistical distribution table of hearing threshold level (HTL) for otologically normal Chinese adults and to provide a scientific basis for revising the diagnostic criteria of occupational noise-induced deafness in China. Methods A total of 
		                        		
		                        	
6.Mediating role of life stress on correlation between work-family conflict and depressive mood of occupational population aged 18-60 years
Haixia ZHAO ; Xianyong TANG ; Wei LUO ; Meng ZHANG ; Songshan BAI
Journal of Environmental and Occupational Medicine 2025;42(8):946-953
		                        		
		                        			
		                        			Background Depressive moods among occupational population are prevalent, which seriously affect their mental-physical health and socioeconomic productivity. This has become an urgent public health concern. Objective To understand current situation of depressive mood among an occupational population aged 18 to 60 covering 120 cities of China, and to explore the relationship between work-family conflict and depressive mood as well as the role of life stress in the relationship, as to provide a scientific basis for developing measures to reduce depressive mood in the occupational population. Methods Using the data of the Psychology and Behavior Investigation of Chinese Residents in 2021, an occupational population aged 18 to 60 years was selected as study subjects. A total of 
		                        		
		                        	
7.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
		                        		
		                        			
		                        			ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences. 
		                        		
		                        		
		                        		
		                        	
8.Anti-osteoporosis Effect of Isorhamnetin: A Review
Shilong MENG ; Xu ZHANG ; Yawei XU ; Yang YU ; Wei LI ; Yanguang CAO ; Xiaolin SHI ; Wei ZHANG ; Kang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):347-352
		                        		
		                        			
		                        			Osteoporosis is a common senile bone metabolism disease, clinically characterized by decreased bone mass, destruction of bone microstructure, increased bone fragility, and easy fracture. It tends to occur in the elderly and postmenopausal women, seriously threatening the quality of life and physical and mental health of the elderly. At present, the treatment of osteoporosis is mainly based on oral western medicines, such as calcium, Vitamin D, and bisphosphonates. Still, there are drawbacks such as a long medication cycle and many adverse reactions. In recent years, due to the advantages of multi-component, multi-pathway, and multi-target, some traditional Chinese medicines and effective ingredients can regulate the osteogenic and osteoclastic differentiation process in both directions and are widely used in the prevention and treatment of osteoporosis. Hippophae rhamnoides is a commonly used herbal medicine, and its fruits are rich in flavonoids, polyphenols, fatty acids, vitamins, and trace elements, which have been proven to have a good anti-osteoporosis effect. Isorhamnetin is the main effective ingredient of Hippophae rhamnoides fruits, which has many pharmacological effects such as anti-inflammation, anti-oxidative stress, anti-aging, and anti-tumor. Studies have shown that isorhamnetin can participate in the regulation of bone metabolism and has a good anti-osteoporosis effect. However, the pharmacological effects and related mechanisms of isorhamnetin against osteoporosis have not been systematically summarized. Therefore, this paper reviewed the pharmacological effects and related mechanisms of isorhamnetin against osteoporosis by referring to relevant literature to provide more basis for the development and application of isorhamnetin. 
		                        		
		                        		
		                        		
		                        	
9.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
		                        		
		                        			
		                        			Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized. 
		                        		
		                        		
		                        		
		                        	
10.Construction of Tax-PC/SDC/PVP-K30 micelles and their protective effect on alcoholic liver injury
Shi-yu ZHANG ; Jing-meng SUN ; Dong-dong LI ; Xin ZHANG ; Jia-hui ZHANG ; Wei-yu ZHANG
Acta Pharmaceutica Sinica 2025;60(2):488-497
		                        		
		                        			
		                        			 Taxifolin (Tax) has been proved to be a medicinal edible substance with protective effects against alcoholic liver injury, however, its poor hydrophilicity and permeability have hindered the clinical application of Tax. In this study, we prepared taxifolin-phosphatidylcholine/sodium deoxycholate/PVP-K30 micells (Tax-MLs). Box-Behnken test was used to obtain the optimal preparation process, and Tax-MLs were characterised by transmission electron microscopy and fourier transform infrared spectroscopy. Physicochemical parameters such as proximate micelle concentration, equilibrium solubility and oil-water partition coefficient were determined, and the release pattern of Tax-MLs was investigated by 
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail