1.The value of high-throughput sequencing data reanalysis in identifying ERBB2 amplification in colorectal cancer patients
Min-Na SHEN ; Li ZHANG ; Xin-Ning CHEN ; Fei HUANG ; Chao-Gang BAI ; Li-Meng CHEN ; Hai-Xiang PENG ; Yan ZHOU ; Bei-Li WANG ; Bai-Shen PAN ; Wei GUO
Fudan University Journal of Medical Sciences 2024;51(2):166-171
Objective To evaluate the value of high-throughput sequencing(HTS)data reanalysis that does not include ERBB2 copy number variation(CNV)analysis,in identifying ERBB2 amplification in patients with colorectal cancer.Methods The HTS data of 252 cases of colorectal cancer diagnosed by pathological biopsy who received peripheral blood cfDNA HTS detection samples were retrospectively analyzed.According to the HTS data of ERBB2 non-amplified samples judged by immunohistochemistry(IHC)and/or fluorescence in situ hybridization(FISH),the number of chromosome 17(Chr17)reads in the total number of reads was calculated the range of the ratio was initially determined as the threshold for prompting ERBB2 amplification.Suspected positive samples were screened according to thresholds and verified by digital PCR,IHC and FISH.Results The proportion of the number of Chr17 reads accounts for the number of total reads in the 89 cases of ERBB2 non-amplified samples determined by IHC and/or FISH ranged from 0.188 to 0.299(0.239±0.192).Using 0.298(1.25 times the mean)as the threshold indicating ERBB2 amplification,the data of 163 samples were analyzed,of which 7 cases were suspected to be positive,and the ratio ranged from 0.302 to 0.853.Among them,5 cases were determined to be positive by IHC and/or FISH,and 6 cases were confirmed to be positive by digital PCR.The ratio of the number of Chr17 reads to the number of total reads was positively correlated with the ratio of ERBB2/EIF2C1,and the correlation was good(r2=0.909).Conclusion The high-throughput sequencing data that does not cover the ERBB2 CNV analysis has a certain hint value for ERBB2 amplification in patients with colorectal cancer.
2.Prussian blue nanoparticles promote wound healing of diabetic skin
Ying BEI ; Wenjing LI ; Meiyun LI ; Meng SU ; Jin ZHANG ; Yu HUANG ; Yanzhao ZHU ; Jiali LI ; Yan WU
Chinese Journal of Tissue Engineering Research 2024;28(10):1526-1532
BACKGROUND:Inflammation,oxidative stress and bacterial infection are the main causes of delayed wound healing in diabetes.In recent years,various inorganic nanomaterials have been widely used in the treatment of skin wound healing due to their antibacterial activities,but their effects on anti-oxidation and anti-inflammation are limited. OBJECTIVE:To investigate the effect of Prussian blue nanoparticles on the wound repair of diabetes in terms of antioxidant,anti-inflammatory and photothermal antibacterial activities. METHODS:Prussian blue nanoparticles were prepared and characterized.(1)In vitro:The biocompatibility of Prussian blue nanoparticles with different concentrations was detected by MTT assay.The cytoprotective effect of Prussian blue nanoparticles and the intracellular reactive oxidative species level were examined under the condition of hydrogen peroxide.The ability of Prussian blue nanoparticles to decompose hydrogen peroxide and superoxide anion radicals was tested;the effect of Prussian blue nanoparticles on lipopolysaccharide-induced macrophage inflammation was investigated.The photothermal antibacterial activity of Prussian blue nanoparticles was detected by the plate colony counting method.(2)In vivo:ICR mice were intraperitoneally injected with streptozotocin to establish a diabetes mouse model.After the model was successfully established,a 6 mm wound was created on the back with a hole punch.There were the control group(no treatment),the Prussian blue group and the Prussian blue with light group.The wound healing and histomorphological changes were observed. RESULTS AND CONCLUSION:(1)In vitro:Prussian blue nanoparticles in 25-200 μg/mL were non-toxic to cells.Prussian blue nanoparticles had the extremely strong antioxidant capacity and mitigated the intracellular reactive oxidative species at a high oxidative stress environment,resulting in a pronounced cytoprotective effect.The Prussian blue nanoparticles not only exhibited hydrogen peroxide degradation activity but also showed strong superoxide scavenging ability.Prussian blue nanoparticles also displayed significant anti-inflammatory activity and extremely strong antibacterial ability after light irradiation.(2)In vivo:After 14 days,the wound sizes of the Prussian blue group and Prussian blue with light group were significantly reduced,and the healing speed of Prussian blue with light group was the fastest.Hematoxylin-eosin and Masson staining showed a lot of granulation tissue formation and collagen deposition in the Prussian blue group and the Prussian blue with light group,of which the Prussian blue with light group was the most.Immunofluorescence staining displayed that,compared with the control group,the expressions of α-SMA and CD31 were increased significantly in Prussian blue group and Prussian blue with light group(P<0.05),but F4/80 expression was decreased significantly in Prussian blue group and Prussian blue with light group(P<0.05),indicating more obvious improvement in the Prussian blue with light group.(3)These results showed that Prussian blue nanoparticles could promote the skin wound healing of the diabetes mouse model by exerting anti-inflammatory,antioxidant and antibacterial effects.
3.Effect of Curcumin on Promoting Skin Wound Healing in Diabetes Mice
Jin ZHANG ; Xingang CUI ; Yanzhao ZHU ; Meng SU ; Ying BEI ; Yu HUANG ; Meiyun LI ; Yan WU
Herald of Medicine 2024;43(2):167-174
Objective To study the effect of curcumin on wound healing in diabetic mice.Methods The effect of curcumin on fibroblast activity was examined by the MTT assay,and the ROS detection kit was used to detect the effect of curcumin on the hydrogen peroxide-induced scavenging effect of reactive oxygen species(ROS)in fibroblasts.Q-PCR was used to detect the effects of curcumin on the mRNA expression of inflammatory factors CD86,CD206,IL-6 and ARG1 in lipopolysaccharide-induced RAW 264.7macrophage.The wound model of diabetes was established by intraperitoneal injection of streptozotocin.Hematoxylin-eosin(HE)and Masson staining were used to evaluate wound healing and histomorphological changes,and immunofluorescence staining was used to determine skin tissue α-smooth muscle actin,CD86 and CD206 expression.Results Curcumin had no significant effect on fibroblast activity at concentrations less than 20 mol·L-1;curcumin scavenged hydrogen peroxide-induced intracellular ROS in fibroblasts;curcumin decreased the mRNA expression of CD86 and IL-6 while increasing CD206 and ARG1 in lipopolysaccharide-induced RAW 264.7 macrophages.After in vivo administration,compared with the control group,wound healing was significantly faster in the curcumin(15,30 mg·mL-1)group after 7 d and 14 d of wound perforation(P<0.01).Hematoxylin-eosin(HE)and Masson staining results confirmed a significant increase in granulation tissue and a significant increase in collagen deposition in the curcumin(15,30 mg·mL-1)group.Immunofluorescence assay showed significantly higher expression of CD206(P<0.01)and significantly reduced expression of CD86(P<0.01)in the skin wounds of curcumin(15,30 mg·mL-1)for 14 d.In addition,the expression of α-SMA in the wound of the high-dose curcumin(30 mg·mL-1)group was significantly higher than that of the low-dose curcumin group(P<0.01).Conclusion Curcumin accelerates diabetic wound healing by promoting granulation tissue proliferation and collagen deposition in refractory diabetic wounds in mice through its anti-inflammatory and antioxidant effects.
4.Analysis of medical reimbursement rate and influencing factors under the DIP payment method
Meng-Yuan ZHAO ; Kun-He LIN ; Ying-Bei XIONG ; Yi-Fan YAO ; Zhi-He CHEN ; Yu-Meng ZHANG ; Li XIANG
Chinese Journal of Health Policy 2024;17(6):40-46
Objective:Analyze the medical reimbursement rate and influencing factors under the DIP payment method to refine the DIP payment policy,promote the optimization of internal operations in medical institutions,and ensure reasonable compensation.Methods:Based on the 2022 DIP fund settlement data from 196 medical institutions in City A,the study used multiple linear regression to analyze the factors affecting medical reimbursement rate and conducted a heterogeneity analysis for medical institutions of different levels.Results:The medical reimbursement rate for medical institutions in City A in 2022 was 103.32%.Medical institutions with lower CMI standardized inpatient costs,lower rates of deviation cases,tertiary care institutions,lower proportion of level-four surgeries,and lower ratios of resident to employee medical insurance cases have higher medical reimbursement rate(P<0.05).Heterogeneity analysis reveals that therates of deviation cases,the proportion of primary care diseases,the ratio of resident to employee medical insurance cases,and the low-standard admission rate have different impacts on medical institutions of different levels.Conclusion:Medical insurance departments should improve policies for primary care diseases,dynamically adjust disease catalogs and payment standards,optimize funding levels and institutional coefficients,and increase penalties for violations to ensure effective use of funds.Medical institutions need to strengthen their understanding of policies,focus on refined internal management,promote standardized and rational diagnosis and treatment through performance assessment transformation,and leverage their own advantages in medical services to reasonably increase the medical reimbursement rate.
5.Endophytic fungi from Scutellaria baicalensis and the enzyme inhibitory activities of their secondary metabolites
De-Min LI ; Xiao-Di MA ; Kang-Xu WANG ; Mei-Yuan LI ; Man-Ping LUO ; Ying-Ying MENG ; Ai-Mei YANG ; Bei WANG ; Xin-Guo ZHANG
Chinese Traditional Patent Medicine 2024;46(8):2644-2649
AIM To study endophytic fungi from Scutellaria baicalensis Georgi.and the enzyme inhibitory activities of their secondary metabolites.METHODS Six different media were used to isolate and purify endophytic fungi from S.baicalensis by tissue homogenate method.The activities of secondary metabolites were evaluated by targeting different enzymes.The highly active strains were identified by molecular biology combined with morphology,and the highly active chemical components were tracked and separated by modern chromatographic separation technology.RESULTS Sixty-four endophytic fungal strains were isolated from S.baicalensis,and one hundred and twenty-eight secondary metabolites were obtained by fermentation.The samples with certain inhibitory activities against adenosine deaminase(ADA),β-lactamase and tyrosinase(TYR)accounted for 14.06%,3.91%and 18.75%,respectively.Strain HTS-23-2 showed high TYR inhibitory activity,and 99%homology with Aspergillus flavus by molecular identification.One compound was isolated from the fermentation samples and identified as kojic acid.CONCLUSION S.baicalensis harbors a rich diversity of endophytic fungi,which serve as a valuable resource for active substances.
6.Aqueous extract of Epimedium sagittatum mitigates pulmonary fibrosis in mice.
Ru WANG ; Fei-Yue HOU ; Meng-Nan ZENG ; Bei-Bei ZHANG ; Qin-Qin ZHANG ; Shuang-Shuang XIE ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(20):5612-5622
This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-β1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-β1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-β1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Epimedium/metabolism*
;
Fibronectins/metabolism*
;
Matrix Metalloproteinase 7/therapeutic use*
;
Matrix Metalloproteinase 8/therapeutic use*
;
Vimentin/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred C57BL
;
Lung
;
Collagen/metabolism*
;
Bleomycin/toxicity*
;
RNA, Messenger/metabolism*
;
Cadherins/metabolism*
7.Advancements in virtual screening techniques for study of enzyme inhibitor compounds.
Bei WANG ; Ying-Ying MENG ; Man-Ping LUO ; Kang-Xu WANG ; Mei-Yuan LI ; De-Min LI ; Xin-Guo ZHANG
China Journal of Chinese Materia Medica 2023;48(24):6533-6544
Enzymes are closely associated with the onset and progression of numerous diseases, making enzymes a primary target in innovative drug development. However, the challenge remains in identifying compounds that exhibit potent inhibitory effects on the target enzymes. With the continuous expansion of the total number of natural products and increasing difficulty in isolating and enriching new compounds, traditional high-throughput screening methods are finding it increasingly challenging to meet the demands of new drug development. Virtual screening, characterized by its high efficiency and low cost, has gradually become an indispensable technology in drug development. It represents a prominent example of the integration of artificial intelligence with biopharmaceuticals and is an inevitable trend in the rapid development of innovative drug screening in the future. Therefore, this article primarily focused on systematically reviewing the recent applications of virtual screening technology in the development of enzyme inhibitors and explored the prospects and advantages of using this technology in developing new drugs, aiming to provide essential theoretical insights and references for the application of related technologies in the field of new drug development.
Artificial Intelligence
;
Enzyme Inhibitors/pharmacology*
;
High-Throughput Screening Assays
;
Molecular Docking Simulation
8.Identification of taste critical quality attribute and formulation optimization of Xiaoer Qingrening Granules based on electronic tongue and human senses
Xiao-yan HU ; Ying LU ; Xiao-meng WANG ; Li-juan MA ; Yu-nan WEI ; Ping DAI ; Chao-fu MA ; Han ZHANG ; Jing WANG ; Nan LI ; Xing-xing DAI ; Lu YAO ; Bei-lei XU ; Wei XU ; Zhi-sheng WU
Acta Pharmaceutica Sinica 2023;58(10):2875-2881
This study primarily concentrated on scientific problems of poor taste caused by unclear critical quality attributes of oral preparations manufactured by Chinese materia medica, successfully established an identification method for taste critical quality attribute and a taste improvement method combining electronic tongue with human senses, and determined the optimal taste formula, to improve patients' oral medication compliance. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine. The results showed that the proportion of bitterness of Xiaoer Qingrening Granule was 61.8%, and its bitterness grade was 3.70, it was determined that bitterness is the critical quality attribute that caused the poor taste of Xiaoer Qingrening Granule. Additionally, the optimal taste formula per milliliter of Xiaoer Qingrening sugar-free intermediate was determined with allowable daily intake, solubility, and sweetness as the limiting conditions, which was 40 mg hydroxypropyl
9. Effects of chronic restraint stress on the expression of N6-methyladenosine and related enzymes in the hippocampus of mice
Yuan ZHANG ; Jie HE ; Yuan ZHANG ; Meng-Meng SHI ; Jia-Bei HE ; Yu-Yan XIANG ; Qiong WU ; Xiao-Lin ZHONG ; Yang XU
Acta Anatomica Sinica 2023;54(2):142-148
Objective To investigate the effect of chronic restraint stress on the expression of N6-methyladenosine (m6A)and related enzymes in the hippocampus of mice. Methods Twenty C57BL/6J male mice were randomly divided into control group and chronic restraint stress (CRS) group, the model group was given for 3 weeks chronic restraint stress to establish a mouse anxiety model. Open field test and elevated plus maze test were used to detect anxiety-like behavior; Immunohistochemistry and m6A RNA methylation assay were used to detect the expression changes of mouse hippocampal m6A; Western blotting and Real-time PCR were used to analyze hippocampal m6A related enzymes expression. Results 1.The behavioral results showed that, compared with the control group, the CRS group showed significantly reduced time spent in the center of the open field(P<0.01), the CRS group showed significantly reduced exploration time in the open arm of elevated plus maze (P<0.0001); 2. Immunohistochemical results showed that, compared with the control group, the hippocampal m6A content in the CRS group reduced significantly (P < 0.001); The results of the m6A RNA methylation assay showed that, compared with the control group, the CRS group showed significantly reduced amount of hippocampal m6A(P<0.05); 3. Real-time PCR results showed that the expression of hippocampal demethylase anaplastic lymphoma kinase B(AlkB) homolog 5(ALKBH5) (P<0.001) and fat mass and obestity associated protein(FTO) (P< 0.05) in the CRS group significantly up-regulated, the expression of methylase Wilms' tumour 1-associating protein (WTAP) (P<0.05) was significantly down-regulated compared with the control group; The expression of m6A methylation binding protein YTH domaincontaining family protein 3 (YTHDF3) (P < 0.05) and YTH domaincontaining protein 2 (YTHDC2) (P < 0.01) was significantly up-regulated. Western blotting result showed that, compared with the control group, the mouse hippocampal demethylase ALKBH5 (P < 0.05) and FTO (P < 0.05) expression in the CRS group significantly up-regulated, the expression of WTAP (P<0.01) was significantly down-regulated; m6A methylation binding protein YTHDF3 (P<0.01) and YTHDC2 (P<0.05) were significantly up-regulated. Conclusion In the anxiety model induced by chronic restraint stress, the expression of m6A in the hippocampus of mice is down-regulated. The mechanism may be related to the up-regulation of the m6A demethylase ALKBH5 and FTO or the down-regulation of the methylase WTAP.
10.Effects of Tingli Dazao Xiefei Decoction on the immune inflammation and intestinal flora in asthmatic rats
Bei-bei ZHANG ; Meng-nan ZENG ; Qin-qin ZHANG ; Ru WANG ; Peng-li GUO ; Wan-qing LU ; Ju-fang JIA ; Meng LIU ; Yu-han ZHANG ; Wei-sheng FENG ; Xiao-ke ZHENG
Acta Pharmaceutica Sinica 2022;57(8):2364-2377
The study aims to explore the intervention mechanism of Tingli Dazao Xiefei Decoction on asthma from the perspective of immune inflammation and intestinal flora, providing a theoretical basis for guiding clinical medication. The ovalbumin (OVA) asthmatic rat model was established by intraperitoneal injection of OVA sensitization solution and aerosol challenge, and divided into control (CON), model (M), dexamethasone group (DEX, 0.075 mg·kg-1) and Tingli Dazao Xiefei Decoction (TLDZ, 3.5 g·kg-1). Firstly, the effects of Tingli Dazao Xiefei Decoction on asthma symptoms of rats, lung and trachea pathological changes of asthmatic rats were observed by inducing cough and asthma experiment, phenol red excretion, hematoxylin-eosin staining (H&E), Masson and periodic acid Schiff (PAS) staining; the levels of transforming growth factor

Result Analysis
Print
Save
E-mail