1.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
2.Effect of Modified Shoutai Pill (寿胎丸加味方) on Inflammatory Reaction and Expression of Endometrial Receptivity-Related Factors in A Rat Model of Polycystic Ovary Syndrome and Miscarriage with High Testosterone-Insulin Resistance
Tingting GUO ; Meng JIANG ; Huaiying YANG ; Xiang JI ; Yuehui ZHANG
Journal of Traditional Chinese Medicine 2025;66(3):275-282
ObjectiveTo explore the possible mechanisms of Modified Shoutai Pill (寿胎丸加味方, MSP) in treating polycystic ovary syndrome (PCOS) with hyperandrogenism, insulin resistance, and miscarriage, focusing on inflammatory response and endometrial receptivity. MethodsThirty female SPF-grade SD rats with regular estrous cycles and in proestrus, and 15 male SPF-grade SD rats were housed together in a 2∶1 ratio at 18:00. At 8:00 next morning, rats showing abundant sperm and vaginal plugs were considered pregnant on the day 0.5. The 30 pregnant rats were randomly divided into three groups, normal group, model group, and MSP group, with 10 rats in each group. From day 0.5 to day 13.5 of pregnancy, the MSP group was given 26.6 g/(kg·d) of the MSP via gavage twice a day for 14 consecutive days. The normal group and the model group received 4 ml of normal saline daily. From day 7.5 to day 13.5 of pregnancy, the rats in the model group and MSP group were intraperitoneally injected with dihydrotestosterone (DHT) and insulin (INS) for 7 consecutive days to establish a PCOS model with hyperandrogenism, insulin resistance, and miscarriage. On day 13.5 of pregnancy, an oral glucose tolerance test (OGTT) was performed to measure blood glucose levels at 0, 30, 60, 90, and 120 minutes. On day 14.5, serum level of progesterone (P4), estradiol (E2), fasting insulin (FINS), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured by ELISA. The insulin resistance index (HOMA-IR) was calculated. Embryo implantation, miscarriage rate, and average number of live fetuses were observed. Uterine tissue pathology was examined by HE staining, and mRNA expression of Il-6, Tnf-α, leukemia inhibitory factor (Lif), homeobox gene 10 (Hoxa10), prolactin family 8 subfamily A member 2 (Prl8a2), and insulin-like growth factor-binding protein 1 (Igfbp1) in the uterine tissue was detected by qRT-PCR. ResultsCompared with the normal group, the model group had significantly higher blood glucose level at 0, 30, 60, 90, and 120 minutes, increased miscarriage rate, elevated HOMA-IR, decreased average number of live fetuses, lower level of P4 and E2, higher level of IL-6, TNF-α, and FINS, and higher mRNA expression of Il-6 and Tnf-α in the uterine tissue. The mRNA expression of Lif, Hoxa10, and Prl8a2 was reduced (P<0.05 or P<0.01). The uterus had a dark red color, visible areas of bleeding, fewer embryos with developmental abnormalities, and increased placental necrosis. Pathological examination revealed thrombus in the decidual layer, unclear decidual cell morphology, loose arrangement, scattered distribution, edema degeneration in the cytoplasm, and nuclear shrinkage or disappearance, with extensive infiltration of inflammatory cells. In contrast, compared with the model group, the MSP group showed significantly lower blood glucose level at 0, 30, 60, 90, and 120 min, reduced miscarriage rate, lower HOMA-IR, increased number of live fetuses, higher level of P4 and E2, and lower level of IL-6, TNF-α, and FINS. The mRNA expression of Il-6 and Tnf-α in the uterine tissue was lower, while the expression of Lif, Hoxa10, and Prl8a2 mRNA was higher (P<0.05 or P<0.01). There was significant improvement in uterine and embryo conditions, as well as in uterine tissue pathology. ConclusionThe MSP can reduce the miscarriage rate in a PCOS model with hyperandrogenism, insulin resistance, and miscarriage. Its mechanism may involve inhibiting inflammation, improving endometrial receptivity, and restoring the defects in endometrial decidualization.
3.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
4.Seroprevalence of antibody against Toxoplasma gondii among patients with hematological malignancies
Yujuan YANG ; Qian WANG ; Lili XIANG ; Yanna MENG ; Cixian ZHANG ; Jie FU
Chinese Journal of Schistosomiasis Control 2025;37(1):93-97
Objective To investigate the seroprevalence of antibody against Toxoplasma gondii among patients with hematological malignancies, and compare it with that among health individuals, so as to provide insights into unraveling the pathogenesis of hematological malignancies. Methods A total of 225 patients with hematological malignancies in Department of Hematology, Xuzhou Central Hospital and 300 healthy individuals in the same hospital were enrolled from 2017 to 2024. Blood samples were collected from all subjects, and the serum IgG and IgM antibodies against T. gondii were detected using chemiluminescent immunoassay. Demographic and clinical features were collected from patients with hematological malignancies, including gender, age, contact with cats, consumption of raw or undercooked meat, type of malignancy, clinical symptoms, blood transfusion and treatment, and the seroprevalence of anti-T. gondii antibody was compared among patients with different characteristics. Results The age (t = 0.72, P > 0.05) and gender (χ2 = 0.93, P > 0.05) were compared between patients with hematological malignancies and healthy individuals. The seroprevalence of T. gondii infection was 20.89% among patients with hematological malignancies and 4.33% among healthy individuals (χ2 = 34.81, P < 0.01), and the seroprevalence of anti-T. gondii IgG antibody was 20.89% among patients with hematological malignancies and 4.33% among healthy individuals (χ2 = 34.81, P < 0.01), while there was no significant difference in the seroprevalence of anti-T. gondii IgM antibody between patients with hematological malignancies and healthy individuals (1.33% vs. 0; corrected χ2 = 2.02, P > 0.05). The seroprevalence of T. gondii infection was 23.08% among patients with leukemia, 16.67% among patients with lymphoma, 19.23% among patients with multiple myeloma, 24.00% among patients with myeloproliferative neoplasm, and 26.09% among patients with myelodysplastic syndrome (χ2 = 1.44, P > 0.05), and was all higher than among healthy individuals (corrected χ2 = 23.92, 10.74, 13.76, 12.84 and 14.54; all P values < 0.01). In addition, there were no significant differences in the detection of anti-T. gondii antibody among patients with hematological malignancies in terms of gender, age, contact with cats, consumption of raw or undercooked meat, chemotherapy or blood transfusion (χ2 = 0.76, 1.97, 0, 2.81, 2.38 and 0.66; all P values > 0.05). Conclusions There is a high risk of T. gondii infection among patients with hematological malignancies, and intensified surveillance of T. gondii infection is recommended among patients with hematological malignancies.
5.Expression of IP3R2 and RYR2 mediated Ca2+signals in a mouse model of delayed encephalopathy after acute carbon monoxide poisoning
Jili ZHAO ; Tianyu MENG ; Yarong YUE ; Xin ZHANG ; Wenqian DU ; Xinyu ZHANG ; Hui XUE ; Wenping XIANG
Chinese Journal of Tissue Engineering Research 2025;29(2):254-261
BACKGROUND:Ca2+expression in astrocytes has been found to be closely related to cognitive function,and the Ca2+signaling pathway regulated by inositol 1,4,5-trisphosphate receptors(IP3R2)and ryanodine receptor(RYR)2 receptors has become a hot spot in the study of cognitive disorder-related diseases. OBJECTIVE:To investigate the expression of Ca2+signals mediated by IP3R2 and RYR2 in hippocampal astrocytes in animal models of delayed encephalopathy after acute carbon monoxide poisoning,and to explore the possible pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning. METHODS:C57BL mice with qualified cognitive function were selected by Morris water maze experiment and randomly divided into control group and experimental group.An animal model of delayed encephalopathy after acute carbon monoxide poisoning was established by static carbon monoxide inhalation in the experimental group,and the same amount of air was inhaled in the control group.Behavioral and neuronal changes,astrocyte specific marker glial fibrillary acidic protein,IP3R2,RYR2 receptor and Ca2+concentration in astrocytes of the two groups were detected using Morris water maze,hematoxylin-eosin staining,western blot,immunofluorescence double labeling and Ca2+fluorescence probe at 21 days after modeling. RESULTS AND CONCLUSION:In the Morris water maze,the escape latency of the experimental group was significantly longer than that of the control group(P<0.05).Hematoxylin-eosin staining results showed that in the experimental group,the number of hippocampal pyramidal cells decreased,the cell structure was disordered,and the nucleus was broken and dissolved.Immunofluorescence results showed that IP3R2 and RYR2 were co-expressed with glial fibrillary acidic protein in the hippocampus,and the expressions of IP3R2,RYR2 and glial fibrillary acidic protein were up-regulated in the hippocampus of the experimental group(P<0.05).Western blot analysis showed that the expressions of IP3R2,RYR2,and glial fibrillary acidic protein in the hippocampus of the experimental group were increased(P<0.05).Ca2+concentration in hippocampal astrocytes increased significantly in the experimental group(P<0.05).To conclude,astrocytes may affect Ca2+signals by mediating IP3R2 and RYR2 receptors,then impair the cognitive function of mice with carbon monoxide poisoning,and eventually lead to delayed encephalopathy after acute carbon monoxide poisoning.
6.Targeting fibroblast growth factor receptor 1 signaling to improve bone destruction in rheumatoid arthritis
Haihui HAN ; Lei RAN ; Xiaohui MENG ; Pengfei XIN ; Zheng XIANG ; Yanqin BIAN ; Qi SHI ; Lianbo XIAO
Chinese Journal of Tissue Engineering Research 2025;29(9):1905-1912
BACKGROUND:Although researchers have noted that fibroblast growth factor receptor 1 shows great potential in rheumatoid arthritis bone destruction,there is a lack of reviews related to the potential mechanisms of fibroblast growth factor receptor 1 in rheumatoid arthritis bone destruction. OBJECTIVE:To comprehensively analyze the mechanism of fibroblast growth factor receptor 1 in bone destruction in rheumatoid arthritis by reviewing the relevant literature at both home and abroad. METHODS:We searched the CNKI database using the Chinese search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,bone cells,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,vascular endothelial cells."PubMed database was searched using the English search terms"fibroblast growth factor receptor 1,rheumatoid arthritis,bone destruction,osteocytes,osteoblasts,osteoclasts,chondrocytes,macrophages,synovial fibroblasts,T cells,endothelial cells."The search period focused on April 1992 to January 2024.After screening the literature by reading titles,abstracts,and full texts,a total of 82 articles were finally included for review according to inclusion and exclusion criteria. RESULTS AND CONCLUSION:Fibroblast growth factor receptor 1 was found to be widely expressed in bone tissue-associated cells,including osteoblasts,osteoclasts,and osteoclasts.Fibroblast growth factor receptor 1 affects bone remodeling and homeostasis by regulating the function of these cells,as well as promoting the onset and progression of bone destruction in rheumatoid arthritis.Fibroblast growth factor receptor 1 is involved in the inflammatory response of synovial fibroblasts and macrophages and regulates angiogenesis of endothelial cells in synovial tissues.Fibroblast growth factor receptor 1 promotes bone destruction in several ways.Fibroblast growth factor receptor 1 may be a potential causative agent of bone destruction in rheumatoid arthritis and provides a reference for further research on its therapeutic targets.
7.Ubiquitination and Deubiquitination in Oral Squamous Cell Carcinoma: Potential Drug Targets
Han CHANG ; Meng-Xiang ZHAO ; Xiao-Feng JIN ; Bin-Bin YING
Progress in Biochemistry and Biophysics 2025;52(10):2512-2534
Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy worldwide, accounting for more than 90% of all oral cancers, and is characterized by high invasiveness and poor long-term prognosis. Its etiology is multifactorial, involving tobacco use, alcohol consumption, and human papillomavirus (HPV) infection. Oral leukoplakia and erythroplakia are the main precancerous lesions lesions, with oral leukoplakia being the most common. Both OSCC and premalignant lesions are closely associated with aberrant activation of multiple signaling pathways. Post-translational modifications (such as ubiquitination and deubiquitination) play key roles in regulating these pathways by controlling protein stability and activity. Growing evidence indicates that dysregulated ubiquitination/deubiquitination can mediate OSCC initiation and progression via aberrant activation of signaling pathways. The ubiquitination/deubiquitination process mainly involves E3 ligases (E3s) that catalyze substrate ubiquitination, deubiquitinating enzymes (DUBs) that remove ubiquitin chains, and the 26S proteasome complex that degrades ubiquitinated substrates. Abnormal expression or mutation of E3s and DUBs can lead to altered stability of critical tumor-related proteins, thereby driving OSCC initiation and progression. Therefore, understanding the aberrantly activated signaling pathways in OSCC and the ubiquitination/deubiquitination mechanisms within these pathways will help elucidate the molecular mechanisms and improve OSCC treatment by targeting relevant components. Here, we summarize four aberrantly activated signaling pathways in OSCC―the PI3K/AKT/mTOR pathway, Wnt/β-catenin pathway, Hippo pathway, and canonical NF-κB pathway―and systematically review the regulatory mechanisms of ubiquitination/deubiquitination within these pathways, along with potential drug targets. PI3K/AKT/mTOR pathway is aberrantly activated in approximately 70% of OSCC cases. It is modulated by E3s (e.g., FBXW7 and NEDD4) and DUBs (e.g., USP7 and USP10): FBXW7 and USP10 inhibit signaling, while NEDD4 and USP7 potentiate it. Aberrant activation of the Wnt/β‑catenin pathway leads to β‑catenin nuclear translocation and induction of cell proliferation. This pathway is modulated by E3s (e.g., c-Cbl and RNF43) and DUBs (e.g., USP9X and USP20): c-Cbl and RNF43 inhibit signaling, while USP9X and USP20 potentiate it. Hippo pathway inactivation permits YAP/TAZ to enter the nucleus and promotes cancer cell metastasis. This pathway is modulated by E3s (e.g., CRL4DCAF1 and SIAH2) and DUBs (e.g., USP1 and USP21): CRL4DCAF1 and SIAH2 inhibit signaling, while USP1 and USP21 potentiate it. Persistent activation of the canonical NF-κB pathway is associated with an inflammatory microenvironment and chemotherapy resistance. This pathway is modulated by E3s (e.g., TRAF6 and LUBAC) and DUBs (e.g., A20 and CYLD): A20 and CYLD inhibit signaling, while TRAF6 and LUBAC potentiate it. Targeting these E3s and DUBs provides directions for OSCC drug research. Small-molecule inhibitors such as YCH2823 (a USP7 inhibitor), GSK2643943A (a USP20 inhibitor), and HOIPIN-8 (a LUBAC inhibitor) have shown promising antitumor activity in preclinical models; PROTAC molecules, by binding to surface sites of target proteins and recruiting E3s, achieve targeted ubiquitination and degradation of proteins insensitive to small-molecule inhibitors, for example, PU7-1-mediated USP7 degradation, offering new strategies to overcome traditional drug limitations. Currently, NX-1607 (a Cbl-b inhibitor) has entered phase I clinical trials, with preliminary results confirming its safety and antitumor activity. Future research on aberrant E3s and DUBs in OSCC and the development of highly specific inhibitors will be of great significance for OSCC precision therapy.
8.Effects and mechanism of Setaria italica extract on improving sleep in insomnia mice
Juan WANG ; Chenzi LYU ; Cairong ZHAO ; Hongyu ZHAO ; Zi’ang LI ; Xiang HAN ; Xianglong MENG ; Shuosheng ZHANG
China Pharmacy 2024;35(3):322-326
OBJECTIVE To investigate the effects of Setaria italica extract on improving insomnia model mice and to explore its potential mechanisms. METHODS The mice were randomly assigned into blank group, model group, positive control group (diazepam, 2.6 mg/kg), and S. italica extract low-dose, medium-dose and high-dose groups (1.2, 2.4, 4.8 g/kg), with 10 mice in each group. Except for the blank group, all other groups received intraperitoneal injection of para-chlorophenylalanine (PCPA) to establish the insomnia model. After modeling, the blank group and model group were given a constant volume of normal saline intragastrically, and administration groups were given relevant medicine intragastrically, with a volume of 0.01 mL/g, once a day, for 7 consecutive days. After the administration, the open-field test was conducted to observe the praxiological changes of mice, and to determine the levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HTAA) in the hippocampal tissue, as well as the contents of 5-HT, brain-derived neurotrophic factor (BDNF), interleukin-2 (IL-2), IL-6, B-cell lymphoma-2 (Bcl- 2), and Bcl-2-associated X protein (Bax) in the serum. The expression of phosphoinositide 3-kinase/protein kinase B/nuclear factor- κB (PI3K/Akt/NF-κB) signaling pathway related protein was determined in the hippocampus of mice. RESULTS Compared with the model group, the total exercise time of mice in S. italica extract high-dose group was significantly prolonged, but the total rest time was significantly shortened (P<0.01); the number of standing times and modification times were significantly reduced (P< 0.01). The contents of 5-HT, BDNF, and Bcl-2 in serum, and Bcl-2/Bax were significantly increased, while the contents of IL-2, IL-6, and Bax were significantly reduced (P<0.05 or P< 0.01). The content of 5-HTAA in the hippocampal tissue and 202104010910029);the phosphorylation levels of PI3K and Akt proteins were increased significantly, while the phosphorylation level of NF-κB p65 protein was decreased significantly (P<0.05).CONCLUSIONS High-dose of S. italica extract demonstrates significant therapeutic effects on insomnia in mice, and the mechanism of which may be associated with the regulation of PI3K/Akt/NF-κB signaling pathway.
9.Structure-based development of potent and selective type-II kinase inhibitors of RIPK1.
Ying QIN ; Dekang LI ; Chunting QI ; Huaijiang XIANG ; Huyan MENG ; Jingli LIU ; Shaoqing ZHOU ; Xinyu GONG ; Ying LI ; Guifang XU ; Rui ZU ; Hang XIE ; Yechun XU ; Gang XU ; Zheng ZHANG ; Shi CHEN ; Lifeng PAN ; Ying LI ; Li TAN
Acta Pharmaceutica Sinica B 2024;14(1):319-334
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.
10.Safety of allogeneic γδT cell immunotherapy for advanced hepatocellular carcinoma and its effect on patients' immune function
CHEN Yan1 ; ZHANG Yitian2, ; XU Yan3 ; LI Man3 ; LI Jiawei3 ; MENG Lingwen3 ; XIANG Zheng4 ; LIU Bing2 ; YIN Zhinan3 ; WU Bin1
Chinese Journal of Cancer Biotherapy 2024;31(3):253-260
[摘 要] 目的:探讨使用同种异体Vγ9Vδ2 T细胞回输治疗晚期肝细胞癌(HCC)患者的安全性及治疗后患者免疫功能的变化。方法:选择2021年10月至2022年10月珠海市人民医院收治的4例晚期HCC患者,从健康供体获取外周血单个核细胞(PBMC)后经刺激扩增培养获得Vγ9Vδ2 T细胞,经质控放行后予以回输治疗,回输细胞剂量为5×108个/次,每两周一次,回输次数9次以上,治疗后检测患者αβT细胞、B细胞、NK细胞、γδT细胞各亚群比例,转氨酶、肌酐、肌酸激酶等肝、肾、心功能生化标志物,以及血常规三系(白细胞系统、红细胞系统和血小板系统)细胞数量的变化。结果:4例患者在回输治疗后均显示出对异体Vγ9Vδ2 T细胞良好的耐受性;转氨酶、肌酐、肌酸激酶等肝、肾、心功能生化标志物以及血常规三系细胞数量在回输前后均无明显变化;患者的Tfh1、Tc1、CD127+TEM、HLADR+CD8+ T细胞、CD27- B细胞比例有升高趋势,提示特异性免疫功能的增强。结论:同种异体Vγ9Vδ2 T细胞治疗晚期HCC有较好的安全性并可在一定程度上改善患者的免疫功能。

Result Analysis
Print
Save
E-mail