1.Spatiotemporal scanning analysis of the incidence of hand-foot-mouth disease in Songjiang District , Shanghai in 2017 - 2022
Yuanyuan KONG ; Meng LI ; Ning HAN ; Xihong LYU
Journal of Public Health and Preventive Medicine 2025;36(5):32-35
		                        		
		                        			
		                        			Objective  To analyze the spatiotemporal clustering characteristics of hand-foot-mouth disease (HFMD) in Songjiang District of Shanghai from 2017 to 2022, and to provide a basis for the prevention and control of HFMD.  Methods  The number of reported cases of HFMD and population data in Songjiang District from 2017 to 2022 were collected. SaTScan 10.1.2 was used for spatiotemporal scanning analysis, and ArcGis 10.7 was used to visually describe the spatial distribution of HFMD.  Results  From 2017 to 2022, a total of 12318 cases of HFMD were reported, with an average annual reporting rate of 106.72/100 000. The incidence rate of HFMD from 2017 to 2019 was 174.19/100 000, higher than the incidence rate of HFMD from 2020 to 2022 (43.29/100 000) (P<0.01). From 2017 to 2022, there were cases reported in each month throughout the year, with the peak incidence occurring from May to October each year. The incidence rate of HFMD in each area had obvious spatial clustering. The results of spatiotemporal scanning analysis showed that the high incidence areas of HFMD were mainly distributed in Jiuting Town, Jiuliting Street, Guangfulin Street, Sijing Town, and Dongjing Town (LLR=1199.68, P<0.01).  Conclusion  The HFMD in Songjiang District of Shanghai shows obvious spatiotemporal clustering distribution. The clustering area is mainly distributed in the northeast of the district. Attention should be paid to high-risk areas and key populations, and targeted preventive measures should be developed.
		                        		
		                        		
		                        		
		                        	
2.Spatiotemporal scanning analysis of the incidence of hand-foot-mouth disease in Songjiang District , Shanghai in 2017 - 2022
Yuanyuan KONG ; Meng LI ; Ning HAN ; Xihong LYU
Journal of Public Health and Preventive Medicine 2025;36(5):32-35
		                        		
		                        			
		                        			Objective  To analyze the spatiotemporal clustering characteristics of hand-foot-mouth disease (HFMD) in Songjiang District of Shanghai from 2017 to 2022, and to provide a basis for the prevention and control of HFMD.  Methods  The number of reported cases of HFMD and population data in Songjiang District from 2017 to 2022 were collected. SaTScan 10.1.2 was used for spatiotemporal scanning analysis, and ArcGis 10.7 was used to visually describe the spatial distribution of HFMD.  Results  From 2017 to 2022, a total of 12318 cases of HFMD were reported, with an average annual reporting rate of 106.72/100 000. The incidence rate of HFMD from 2017 to 2019 was 174.19/100 000, higher than the incidence rate of HFMD from 2020 to 2022 (43.29/100 000) (P<0.01). From 2017 to 2022, there were cases reported in each month throughout the year, with the peak incidence occurring from May to October each year. The incidence rate of HFMD in each area had obvious spatial clustering. The results of spatiotemporal scanning analysis showed that the high incidence areas of HFMD were mainly distributed in Jiuting Town, Jiuliting Street, Guangfulin Street, Sijing Town, and Dongjing Town (LLR=1199.68, P<0.01).  Conclusion  The HFMD in Songjiang District of Shanghai shows obvious spatiotemporal clustering distribution. The clustering area is mainly distributed in the northeast of the district. Attention should be paid to high-risk areas and key populations, and targeted preventive measures should be developed.
		                        		
		                        		
		                        		
		                        	
3.Biomechanical characteristics of lower extremities during counter movement jump in male patients with functional ankle instability
Zilong WANG ; Xin MENG ; Zhiqi ZHANG ; Yu XIE ; Lingyue MENG ; Qiuxia ZHANG ; Lingyu KONG
Chinese Journal of Tissue Engineering Research 2025;29(3):478-485
		                        		
		                        			
		                        			BACKGROUND:As the end bearing joint of the human body,the ankle joint bears the top-down pressure of the body,which leads to the ankle joint is easy to be damaged in the movement,can induce functional ankle instability,which negatively affects daily life.The study of lower extremity biomechanics in patients with functional ankle instability during counter movement jump is of great significance for scientific training,prevention of ankle injury,and clinical rehabilitation after injury. OBJECTIVE:To investigate the kinetics and kinematics of lower limbs in the longitudinal jumping of functional ankle instability population. METHODS:From March to September 2023,15 male patients with functional ankle instability and 15 healthy people,aged 22-28 years old,were recruited in Soochow University.All subjects completed counter movement jump experiment.Vicon infrared high-speed motion capture system and Kistler three-dimensional force measuring table were used to simultaneously collect the lower limb kinematics and kinetics indexes of the two groups of subjects at the take-off stage of counter movement jump,the instant off the ground,the initial landing moment and the peak moment of vertical ground reaction force. RESULTS AND CONCLUSION:(1)At the instant off the ground,the affected side of the functional ankle instability group showed smaller knee internal rotation moment(P=0.020)and smaller ankle internal rotation moment(P=0.009)compared with the affected side of the healthy control group.(2)At the moment of landing,the affected side of the functional ankle instability group showed a smaller hip flexion angle than the affected side of the healthy control group(P=0.039).Compared with the healthy control group,functional ankle instability group showed smaller hip abduction angle(P=0.022),smaller knee varus angle(P=0.010),larger knee external rotation angle(P=0.021),smaller ankle varus angle(P=0.004),and smaller external ankle rotation angle(P=0.008).(3)At the peak of vertical ground reaction force,functional ankle instability group showed a smaller ankle varus angle than healthy control group(P=0.044).(4)The results showed that the lower limb biomechanical characteristics of the patients with functional ankle instability were abnormal compared with the healthy people during counter movement jump,which mainly showed the changes of the kinematics and kinetics indexes of the lower limb joints in the sagittal plane and the frontal plane at the moment of lift-off and landing.These changes reflect that people with functional ankle instability adopt rigid take-off and landing patterns when performing counter movement jump,tend to transfer the load of the affected ankle joint to other joints of the lower limb,and show compensatory phenomenon of the healthy lower limb.Therefore,detection and correction of abnormal biomechanical features should be a part of rehabilitation training for those with functional ankle instability.
		                        		
		                        		
		                        		
		                        	
4.Traditional Chinese Medicine Treats Acute Lung Injury by Modulating NLRP3 Inflammasome: A Review
Jiaojiao MENG ; Lei LIU ; Yuqi FU ; Hui SUN ; Guangli YAN ; Ling KONG ; Ying HAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):292-301
		                        		
		                        			
		                        			Acute lung injury (ALI) is one of the most common and critical diseases in clinical practice, with extremely high morbidity and mortality, seriously threatening human life and health. The pathogenesis of ALI is complex, in which the inflammatory response is a key factor. Studies have shown that NOD-like receptor protein 3 (NLRP3) inflammasomes are involved in ALI through mechanisms such as inflammation induction, increased microvascular permeability, recruitment of neutrophils, oxidative stress, and pyroptosis, playing a key role in the occurrence and progression of ALI. Therefore, regulating NLRP3 inflammasomes and inhibiting the release of inflammatory factors can alleviate the damage in ALI. At present, ALI is mainly treated by mechanical ventilation and oxygen therapy, which have problems such as high costs and poor prognosis. In recent years, studies have shown that traditional Chinese medicine (TCM) can reduce the inflammatory response and the occurrence of oxidative stress and pyroptosis by regulating the NLRP3 inflammasome, thus alleviating the damage and decreasing the mortality of ALI. Based on the relevant literature in recent years, this article reviews the research progress in TCM treatment of ALI by regulating NLRP3 inflammasomes, discusses how NLRP3 inflammasomes participate in ALI, and summarizes the active ingredients, extracts, and compound prescriptions of TCM that regulate NLRP3 inflammasomes, aiming to provide new ideas for the clinical treatment of ALI and the development of relevant drugs. 
		                        		
		                        		
		                        		
		                        	
5.Neutrophil activation is correlated with acute kidney injury after cardiac surgery under cardiopulmonary bypass
Tingting WANG ; Yuanyuan YAO ; Jiayi SUN ; Juan WU ; Xinyi LIAO ; Wentong MENG ; Min YAN ; Lei DU ; Jiyue XIONG
Chinese Journal of Blood Transfusion 2025;38(3):358-367
		                        		
		                        			
		                        			 [Objective] To explore the relationship between neutrophil activation under cardiopulmonary bypass (CPB) and the incidence of cardiac surgery-associated acute kidney injury (CS-AKI). [Methods] This prospective cohort study enrolled adult patients who scheduled for cardiac surgery under CPB at West China Hospital between May 1, 2022 and March 31, 2023. The primary outcome was acute kidney injury (AKI). Blood samples (5 mL) were obtained from the central vein before surgery, at rewarming, at the end of CPB, and 24 hours after surgery. Neutrophils were labeled with CD11b, CD54 and other markers. To assess the effect of neutrophils activation on AKI, propensity score matching (PSM) was employed to equilibrate covariates between the groups. [Results] A total of 120 patients included into the study, and 17 (14.2%) developed AKI. Both CD11b+ and CD54+ neutrophils significantly increased during the rewarming phase and the increases were kept until 24 hours after surgery. During rewarming, the numbers of CD11b+ neutrophils were significantly higher in AKI compared to non-AKI (4.71×109/L vs 3.31×109/L, Z=-2.14, P<0.05). Similarly, the CD54+ neutrophils counts were also significantly higher in AKI than in non-AKI before surgery (2.75×109/L vs 1.79×109/L, Z=-2.99, P<0.05), during rewarming (3.12×109/L vs 1.62×109/L, Z=-4.34, P<0.05), and at the end of CPB (4.28×109/L vs 2.14×109/L, Z=-3.91, P<0.05). An analysis of 32 matched patients (16 in each group) revealed that CD11b+ and CD54+ neutrophil levels of AKI were 1.74 folds (4.83×109/L vs 2.77×109/L, Z=-2.72, P<0.05) and 2.34 folds (3.32×109/L vs 1.42×109/L, Z=-4.12, P<0.05), respectively, of non-AKI at rewarming phase. [Conclusion] Neutrophils are activated during CPB, and they can be identified by CD11b/CD54 markers. The activated neutrophils of AKI patients are approximately 2 folds of non-AKI during the rewarming phase, with disparity reached peak between groups during rewarming. These findings suggest the removal of 50% of activated neutrophils during the rewarming phase may be effective to reduce the risk of AKI.
		                        		
		                        		
		                        		
		                        	
6.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
7.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
8.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
9.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
		                        		
		                        			 Background:
		                        			In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes. 
		                        		
		                        			Methods:
		                        			The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments. 
		                        		
		                        			Results:
		                        			RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice. 
		                        		
		                        			Conclusion
		                        			RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells. 
		                        		
		                        		
		                        		
		                        	
10.Mutational Signatures Analysis of Micropapillary Components and Exploration of ZNF469 Gene in Early-stage Lung Adenocarcinoma with Ground-glass Opacities.
Youtao XU ; Qinhong SUN ; Siwei WANG ; Hongyu ZHU ; Guozhang DONG ; Fanchen MENG ; Zhijun XIA ; Jing YOU ; Xiangru KONG ; Jintao WU ; Peng CHEN ; Fangwei YUAN ; Xinyu YU ; Jinfu JI ; Zhitong LI ; Pengcheng ZHU ; Yuxiang SUN ; Tongyan LIU ; Rong YIN ; Lin XU
Chinese Journal of Lung Cancer 2024;26(12):889-900
		                        		
		                        			BACKGROUND:
		                        			In China, lung cancer remains the cancer with the highest incidence and mortality rate. Among early-stage lung adenocarcinomas (LUAD), the micropapillary (MPP) component is prevalent and typically exhibits high aggressiveness, significantly correlating with early metastasis, lymphatic infiltration, and reduced five-year survival rates. Therefore, the study is to explore the similarities and differences between MPP and non-micropapillary (non-MPP) components in malignant pulmonary nodules characterized by GGOs in early-stage LUAD, identify unique mutational features of the MPP component and analyze the relationship between the ZNF469 gene, a member of the zinc-finger protein family, and the prognosis of early-stage LUAD, as well as its correlation with immune infiltration.
		                        		
		                        			METHODS:
		                        			A total of 31 malignant pulmonary nodules of LUAD were collected and dissected into paired MPP and non-MPP components using microdissection. Whole-exome sequencing (WES) was performed on the components of early-stage malignant pulmonary nodules. Mutational signatures analysis was conducted using R packages such as maftools, Nonnegative Matrix Factorization (NMF), and Sigminer to unveil the genomic mutational characteristics unique to MPP components in invasive LUAD compared to other tumor tissues. Furthermore, we explored the expression of the ZNF469 gene in LUAD using The Cancer Genome Atlas (TCGA) database to investigate its potential association with the prognosis. We also investigated gene interaction networks and signaling pathways related to ZNF469 in LUAD using the GeneMANIA database and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Lastly, we analyzed the correlation between ZNF469 gene expression and levels of immune cell infiltration in LUAD using the TIMER and TISIDB databases.
		                        		
		                        			RESULTS:
		                        			MPP components exhibited a higher number of genomic variations, particularly the 13th COSMIC (Catalogue of Somatic Mutations in Cancer) mutational signature characterized by the activity of the cytidine deaminase APOBEC family, which was unique to MPP components compared to non-MPP components in tumor tissues. This suggests the potential involvement of APOBEC in the progression of MPP components in early-stage LUAD. Additionally, MPP samples with high similarity to APOBEC signature displayed a higher tumor mutational burden (TMB), indicating that these patients may be more likely to benefit from immunotherapy. The expression of ZNF469 was significantly upregulated in LUAD compared to normal tissue, and was associated with poor prognosis in LUAD patients (P<0.05). Gene interaction network analysis and GO/KEGG enrichment analysis revealed that COL6A1, COL1A1, COL1A2, TGFB2, MMP2, COL8A2 and C2CD4C interacted with ZNF469 and were mainly involved in encoding collagen proteins and participating in the constitution of extracellular matrix. ZNF469 expression was positively correlated with immune cell infiltration in LUAD (P<0.05).
		                        		
		                        			CONCLUSIONS
		                        			The study has unveiled distinctive mutational signatures in the MPP components of early-stage invasive LUAD in the Asian population. Furthermore, we have identified that the elevated expression of mutated ZNF469 impacts the prognosis and immune infiltration in LUAD, suggesting its potential as a diagnostic and prognostic biomarker in LUAD.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms/genetics*
		                        			;
		                        		
		                        			Adenocarcinoma of Lung/genetics*
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			Prognosis
		                        			;
		                        		
		                        			Transcription Factors
		                        			
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail