1.Policies, standards and technological models of digital rehabilitation aligned with the framework of WHO's global digital health strategy
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Qi JING ; Yaoguang ZHANG
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):125-135
ObjectiveTo systematically analyze the global policy framework, standard systems and application technology models of digital rehabilitation within the framework of the World Health Organization (WHO) Global Digital Health Strategy and propose policy recommendations for the future development of digital rehabilitation. MethodsBased on the policies on digital health and rehabilitation development issued by the WHO, focusing on the Global Digital Health Strategy, Rehabilitation 2030 Initiative, Rehabilitation in Health Systems, Rehabilitation in Health Systems: A Guide for Action, and World Report on Disability, a systematic review was conducted, to explore the policy architecture and core content of digital rehabilitation, the standard system for digitalizing rehabilitation, and key technological models for the development of digital rehabilitation. ResultsIn the context of global health and digital transformation, the development of digital rehabilitation services was an essential component of the global digital health strategy. Building a comprehensive policy framework and content system for digital rehabilitation was critical for strengthening rehabilitation data governance, enhancing data utilization efficiency, and ensuring data privacy and security. Empowering rehabilitation with digital technology was vital for improving the standardization, effectiveness, coverage, quality and safety of rehabilitation services. International digital rehabilitation policies primarily involved the following areas: policy and governance, digital standard systems, data privacy, security and ethics, digital talent cultivation and capacity building, and monitoring, evaluation and continuous improvement of digitally empowered rehabilitation services. The standard system for rehabilitation digitization covered the three major reference classifications of the WHO Family of International Classifications, including International Classification of Diseases Eleventh Revision (ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI), especially ICF. It also included international data interoperability standards, data security and privacy protection standards, data quality and certification standards, and health information standards, etc. The application technology models of digital rehabilitation primarily included data-driven service models, artificial intelligence -enabled models, and remote rehabilitation models combined with virtual reality, augmented reality technologies, and Internet of Things support. ConclusionThe establishment and implementation of comprehensive policies, standards and technological models for digital rehabilitation are crucial for driving the digital transformation and development of global rehabilitation services. Under the framework of the WHO Global Digital Health Strategy, it is necessary to build adaptive digital rehabilitation policy frameworks, and enhance digital governance capabilities and levels, establishing and improving digital rehabilitation standard systems, and promoting the interoperability and integration of rehabilitation data with other health big data. Meanwhile, it is essential to actively develop data-driven technological models for rehabilitation services to comprehensively improve the accessibility, availability, quality and safety of rehabilitation services.
2.Insights on Peripheral Blood Biomarkers for Parkinson’s Disease
Yu-Meng LI ; Jing-Kai LIU ; Zi-Xuan CHEN ; Yu-Lin DENG
Progress in Biochemistry and Biophysics 2025;52(1):72-87
Parkinson’s disease (PD) is a common neurodegenerative disorder with profound impact on patients’ quality of life and long-term health, and early detection and intervention are particularly critical. In recent years, the search for precise and reliable biomarkers has become one of the key strategies to effectively address the clinical challenges of PD. In this paper, we systematically evaluated potential biomarkers, including proteins, metabolites, epigenetic markers, and exosomes, in the peripheral blood of PD patients. Protein markers are one of the main directions of biomarker research in PD. In particular, α‑synuclein and its phosphorylated form play a key role in the pathological process of PD. It has been shown that aggregation of α-synuclein may be associated with pathologic protein deposition in PD and may be a potential marker for early diagnosis of PD. In terms of metabolites, uric acid, as a metabolite, plays an important role in oxidative stress and neuroprotection in PD. It has been found that changes in uric acid levels may be associated with the onset and progression of PD, showing its potential as an early diagnostic marker. Epigenetic markers, such as DNA methylation modifications and miRNAs, have also attracted much attention in Parkinson’s disease research. Changes in these markers may affect the expression of PD-related genes and have an important impact on the onset and progression of the disease, providing new research perspectives for the early diagnosis of PD. In addition, exosomes, as a potential biomarker carrier for PD, are able to carry a variety of biomolecules involved in intercellular communication and pathological regulation. Studies have shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide a new breakthrough for early diagnosis. It has been shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood may provide new breakthroughs in early diagnosis. In summary, through in-depth evaluation of biomarkers in the peripheral blood of PD patients, this paper demonstrates the important potential of these markers in the early diagnosis of PD and in the study of pathological mechanisms. Future studies will continue to explore the clinical application value of these biomarkers to promote the early detection of PD and individualized treatment strategies.
3.Manufacture and mechanical property on zirconia abutments with a titanium base in dental implant restoration
Huan WANG ; Jing LU ; Ying LI ; Maohua MENG ; Jiayu SHU ; Yuncai LUO ; Wenjie LI ; Qiang DONG
Chinese Journal of Tissue Engineering Research 2025;29(10):2171-2177
BACKGROUND:With the development of computer-aided design and computer-aided manufacturing technology,zirconia abutments with a titanium base are widely used in clinic due to its good application advantages,but there are still some problems and a lack of consensus design standards. OBJECTIVE:To review the fabrication methods of Ti-base zirconia abutment,and the effect of abutment connection,emergence design,abutment angle,and bonding on mechanical properties of Ti-base zirconia abutment. METHODS:Relevant literature published from 2010 to 2023 was searched in CNKI and PubMed databases with the search terms"zirconia abutment,titanium base"in Chinese and English,respectively.The search time limit was extended for some classical literature.The relevant literature was obtained through inclusion and exclusion criteria,and 57 eligible documents were included for review. RESULTS AND CONCLUSION:It is recommended that clinicians try to select antirotational titanium bases or rotational titanium bases with a Morse taper connection.Implants should be placed in the correct axial angulation of not more than 15° or with an inclination to the palatal side when using angled zirconia abutments.When a≥30° labial inclination is followed for implant placement,the bite force must be decreased effectively to reduce the risk of mechanical and biological complications of implants,abutments,and prostheses.Ti-base zirconia abutments with a higher gingival height should be selected,and its restorative angle should not exceed 40°.Multilink Hybrid Abutment could be the first choice for extraoral bonding of zirconia abutment to titanium bases.
4.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
5.Construction of Tax-PC/SDC/PVP-K30 micelles and their protective effect on alcoholic liver injury
Shi-yu ZHANG ; Jing-meng SUN ; Dong-dong LI ; Xin ZHANG ; Jia-hui ZHANG ; Wei-yu ZHANG
Acta Pharmaceutica Sinica 2025;60(2):488-497
Taxifolin (Tax) has been proved to be a medicinal edible substance with protective effects against alcoholic liver injury, however, its poor hydrophilicity and permeability have hindered the clinical application of Tax. In this study, we prepared taxifolin-phosphatidylcholine/sodium deoxycholate/PVP-K30 micells (Tax-MLs). Box-Behnken test was used to obtain the optimal preparation process, and Tax-MLs were characterised by transmission electron microscopy and fourier transform infrared spectroscopy. Physicochemical parameters such as proximate micelle concentration, equilibrium solubility and oil-water partition coefficient were determined, and the release pattern of Tax-MLs was investigated by
6.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
7.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
8.Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats.
Meng-Ge FENG ; Lin-Han XIANG ; Jing ZHANG ; Wen-Hui ZHAO ; Yang LI ; Li-Li LI ; Guang-Xue LIU ; Shao-Qing CAI ; Feng XU
China Journal of Chinese Materia Medica 2025;50(9):2539-2562
The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Rhizome/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Chromatography, High Pressure Liquid
;
Panax notoginseng/chemistry*
;
Tandem Mass Spectrometry
;
Feces/chemistry*
9.Mechanism of salidroside in inhibiting expression of adhesion molecules in oxLDL-induced endothelial cells by regulating ferroptosis mediated by SIRT1/Nrf2.
Meng ZHANG ; Min XIAO ; Jing-Jing LI ; Jiang-Feng LI ; Guang-Hui FAN
China Journal of Chinese Materia Medica 2025;50(10):2787-2797
This article investigated the effect and mechanism of salidroside(SAL) on the expression of adhesion molecules in oxidized low-density lipoprotein(oxLDL)-induced mouse aortic endothelial cell(MAEC). The oxLDL-induced endothelial cell injury model was constructed, and the safe concentration and action time of SAL were screened. The cells were divided into control group, oxLDL group, low and high concentration groups of SAL, and ferrostatin-1(Fer-1) group. The cell viability was detected by CCK-8 assay; lactate dehydrogenase(LDH) leakage was measured by colorimetry; the expression of intercellular adhesion molecule 1(ICAM-1) and recombinant vascular cell adhesion molecule 1(VCAM-1) were detected by immunofluorescence; Fe~(2+),glutathione(GSH),malondialdehyde(MDA),and 4-hydroxynonenal(4-HNE) levels were detected by kit method; reactive oxygen species(ROS) was detected by DCFH-DA probe; the levels of glutathione peroxidase 4(GPX4),silent mating type information regulation 2 homolog 1(SIRT1), and nuclear factor erythroid 2-related factor 2(Nrf2) were determined by using Western blot. The inhibitors of Nrf2 and SIRT1 were used, and endothelial cell were divided into control group, oxLDL group, SAL group, ML385 group(Nrf2 inhibitor), and EX527 group(SIRT1 inhibitor). The ultrastructure of mitochondria was observed by electron microscope; mitochondrial membrane potential(MMP) was detected by flowcytometry; the expressions of SIRT1,Nrf2,solute carrier family 7 member 11(SLC7A11),GPX4,ferroportin 1(FPN1),ferritin heavy chain 1(FTH1),ICAM-1, and VCAM-1 were detected by Western blot. The results showed that similar to Fer-1,low and high concentrations of SAL could improve cell viability, inhibit LDH release and the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cells(P<0.05 or P<0.01). It was related to increase in GSH level, decrease in Fe~(2+),ROS,MDA, and 4-HNE level, and up-regulation of SIRT1,Nrf2, and GPX4 expression to inhibit ferroptosis(P<0.05 or P<0.01). The intervention effect of high concentration SAL was the most significant. ML385 and EX527 could partially offset the protection of SAL on mitochondrial structure and MMP and reverse the ability of SAL to up-regulate the expression of SIRT1,Nrf2,SLC7A11,GPX4,FPN1, and FTH1 and down-regulate the expression of ICAM-1 and VCAM-1(P<0.05 or P<0.01).To sum up, SAL could reduce the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cell, which may relate to activation of SLC7A11/GPX4 antioxidant signaling pathway mediated by SITR1/Nrf2, up-regulation of FPN1 and FTH1 expression, and inhibition of ferroptosis.
Sirtuin 1/genetics*
;
Animals
;
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Endothelial Cells/cytology*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Adhesion Molecules/genetics*
;
Reactive Oxygen Species/metabolism*
;
Intercellular Adhesion Molecule-1/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
;
Cell Survival/drug effects*
10.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats

Result Analysis
Print
Save
E-mail