1.An atlas of immune cell transcriptomes in human immunodeficiency virus-infected immunological non-responders identified marker genes that control viral replication.
Yahong CHEN ; Xin LI ; Shuran LIU ; Wen AO ; Jing LIN ; Zhenting LI ; Shouli WU ; Hanhui YE ; Xiao HAN ; Dongliang LI
Chinese Medical Journal 2023;136(22):2694-2705
BACKGROUND:
Previous studies have examined the bulk transcriptome of peripheral blood immune cells in acquired immunodeficiency syndrome patients experiencing immunological non-responsiveness. This study aimed to investigate the characteristics of specific immune cell subtypes in acquired immunodeficiency syndrome patients who exhibit immunological non-responsiveness.
METHODS:
A single-cell transcriptome sequencing of peripheral blood mononuclear cells obtained from both immunological responders (IRs) (CD4 + T-cell count >500) and immunological non-responders (INRs) (CD4 + T-cell count <300) was conducted. The transcriptomic profiles were used to identify distinct cell subpopulations, marker genes, and differentially expressed genes aiming to uncover potential genetic factors associated with immunological non-responsiveness.
RESULTS:
Among the cellular subpopulations analyzed, the ratios of monocytes, CD16 + monocytes, and exhausted B cells demonstrated the most substantial differences between INRs and IRs, with fold changes of 39.79, 11.08, and 2.71, respectively. In contrast, the CD4 + T cell ratio was significantly decreased (0.39-fold change) in INRs compared with that in IRs. Similarly, the ratios of natural killer cells and terminal effector CD8 + T cells were also lower (0.37-fold and 0.27-fold, respectively) in the INRs group. In addition to several well-characterized immune cell-specific markers, we identified a set of 181 marker genes that were enriched in biological pathways associated with human immunodeficiency virus (HIV) replication. Notably, ISG15 , IFITM3 , PLSCR1 , HLA-DQB1 , CCL3L1 , and DDX5 , which have been demonstrated to influence HIV replication through their interaction with viral proteins, emerged as significant monocyte marker genes. Furthermore, the differentially expressed genes in natural killer cells were also enriched in biological pathways associated with HIV replication.
CONCLUSIONS
We generated an atlas of immune cell transcriptomes in HIV-infected IRs and INRs. Host genes associated with HIV replication were identified as markers of, and were found to be differentially expressed in, different types of immune cells.
Humans
;
Acquired Immunodeficiency Syndrome
;
Transcriptome/genetics*
;
HIV
;
HIV Infections/genetics*
;
Leukocytes, Mononuclear/metabolism*
;
CD4-Positive T-Lymphocytes/metabolism*
;
Virus Replication
;
Membrane Proteins/metabolism*
;
RNA-Binding Proteins/metabolism*
2.The I226R protein of African swine fever virus inhibits the cGAS-STING-mediated innate immune response.
Yabo LI ; Huicong LOU ; Yuna ZHAO ; Wenhui FAN ; Pengtao JIAO ; Lei SUN ; Tingrong LUO ; Wenjun LIU
Chinese Journal of Biotechnology 2023;39(12):4796-4808
This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type Ⅰ interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.
Animals
;
Swine
;
African Swine Fever Virus/metabolism*
;
Membrane Proteins/metabolism*
;
Immunity, Innate
;
Nucleotidyltransferases/metabolism*
;
Signal Transduction/genetics*
3.Mechanism of Buyang Huanwu Decoction in protecting ischemic myocardium by regulating platelet autophagy in rats with acute myocardial infarction.
Jia-Ming GAO ; Hao GUO ; Ye-Hao ZHANG ; Ling-Mei LI ; Gao-Jie XIN ; Zi-Xin LIU ; Yue YOU ; Yuan-Yuan CHEN ; Jian-Xun LIU ; Jian-Hua FU
China Journal of Chinese Materia Medica 2023;48(15):4156-4163
This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/therapeutic use*
;
Myocardial Infarction/genetics*
;
Myocardium/metabolism*
;
Aspirin/therapeutic use*
;
TOR Serine-Threonine Kinases/metabolism*
;
Membrane Proteins/metabolism*
;
Mitochondrial Proteins
4.Clinical and genetic analysis of a child with Cerebral creatine deficiency syndrome due to variant of SLC6A8 gene.
Yunjiang ZHANG ; Yifeng DING ; Yijie LI ; Shuizhen ZHOU
Chinese Journal of Medical Genetics 2023;40(11):1397-1403
OBJECTIVE:
To explore the clinical features and genetic variant in a child with Cerebral creatine deficiency syndrome (CCDS).
METHODS:
A child who had presented at the Affiliated Children's Hospital of Fudan University on March 5, 2021 was selected as the study subject. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing. The level of creatine in the brain was determined by magnetic resonance spectroscopy.
RESULTS:
The patient, a 1-year-and-10-month male, had presented with developmental delay and epilepsy. Both his mother and grandmother had a history of convulsions. MRS showed reduced cerebral creatine in bilateral basal ganglia and thalamus. The child was found to harbor a hemizygous splicing variant of the SLC6A8 gene, namely c.1767+1_1767+2insA, which may lead to protein truncation. The variant was not found in the public databases. Both his mother and grandmother were heterozygous carriers for the same variant.
CONCLUSION
The hemizygous c.1767+1_1767+2insA variant of the SLC6A8 gene probably underlay the CCDS in this child. Discovery of the novel variant has also expanded the mutational spectrum of the SLC6A8 gene.
Humans
;
Male
;
Amino Acid Metabolism, Inborn Errors
;
Brain
;
Creatine/genetics*
;
Heterozygote
;
Mothers
;
Nerve Tissue Proteins
;
Plasma Membrane Neurotransmitter Transport Proteins/genetics*
;
Infant
5.Cryo-EM structures of a prokaryotic heme transporter CydDC.
Chen ZHU ; Yanfeng SHI ; Jing YU ; Wenhao ZHAO ; Lingqiao LI ; Jingxi LIANG ; Xiaolin YANG ; Bing ZHANG ; Yao ZHAO ; Yan GAO ; Xiaobo CHEN ; Xiuna YANG ; Lu ZHANG ; Luke W GUDDAT ; Lei LIU ; Haitao YANG ; Zihe RAO ; Jun LI
Protein & Cell 2023;14(12):919-923
6.Functions of SURF4 gene in vivo.
Chinese Medical Journal 2023;136(2):248-250
7.Diagnostic value of novel hepatic fibrosis markers in assessing cirrhosis in patients with chronic hepatitis C.
Qian KANG ; Jian Xiang LIU ; Ning TAN ; Hong Yu CHEN ; Jia Li PAN ; Yi Fan HAN ; Xiao Yuan XU
Chinese Journal of Hepatology 2023;31(1):56-64
Objective: To investigate the efficacy of chitinase-3-like protein 1 (CHI3L1) and Golgi protein 73 (GP73) in the diagnosis of cirrhosis and the dynamic changes of CHI3L1 and GP73 after HCV clearance in patients with chronic hepatitis C (CHC) treated with direct-acting antiviral drugs (DAAs). The comparison of continuous variables of normal distribution were statistically analyzed by ANOVA and t-test. The comparison of continuous variables of non-normal distribution were statistically analyzed by rank sum test. The categorical variables were statistically analyzed by Fisher's exact test and χ(2) test. Correlation analysis was performed using Spearman correlation analysis. Methods: Data of 105 patients with CHC diagnosed from January 2017 to December 2019 were collected. The receiver operating characteristic curve (ROC curve) was plotted to study the efficacy of serum CHI3L1 and GP73 for the diagnosis of cirrhosis. Friedman test was used to compare CHI3L1 and GP73 change characteristics. Results: The areas under the ROC curve for CHI3L1 and GP73 in the diagnosis of cirrhosis at baseline were 0.939 and 0.839, respectively. Serum levels of CHI3L1 and GP73 in the DAAs group decreased significantly at the end of treatment compared with baseline [123.79 (60.25, 178.80) ng/ml vs. 118.20 (47.68, 151.36) ng/ml, P = 0.001; 105.73 (85.05, 130.69) ng/ml vs. 95.52 (69.52, 118.97) ng/ml, P = 0.001]. Serum CHI3L1 and GP73 in the pegylated interferon combined with ribavirin (PR) group were significantly lower at the end of 24 weeks of treatment than the baseline [89.15 (39.15, 149.74) ng/ml vs. 69.98 (20.52, 71.96) ng/ml, P < 0.05; 85.07 (60.07, 121) ng/ml vs. 54.17 (29.17, 78.65) ng/ml, P < 0.05]. Conclusion: CHI3L1 and GP73 are sensitive serological markers that can be used to monitor the fibrosis prognosis in CHC patients during treatment and after obtaining a sustained virological response. Serum CHI3L1 and GP73 levels in the DAAs group decreased earlier than those in the PR group, and the serum CHI3L1 levels in the untreated group increased compared with the baseline at about two years of follow-up.
Humans
;
Hepatitis C, Chronic/drug therapy*
;
Antiviral Agents/therapeutic use*
;
Membrane Proteins/metabolism*
;
Liver Cirrhosis/diagnosis*
;
Fibrosis
;
Biomarkers
8.Bloodletting Acupuncture at Jing-Well Points Alleviates Myocardial Injury in Acute Altitude Hypoxic Rats by Activating HIF-1α/BNIP3 Signaling-Mediated Mitochondrial Autophagy and Decreasing Oxidative Stress.
Chao WANG ; Meng-Xin LI ; Yun-di LI ; Yong-Ping LI
Chinese journal of integrative medicine 2023;29(2):170-178
OBJECTIVE:
To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat.
METHODS:
Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling.
RESULTS:
BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH.
CONCLUSION
BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.
Animals
;
Rats
;
Acupuncture Therapy
;
Altitude
;
Apoptosis
;
Autophagy
;
Bloodletting
;
Hypoxia/metabolism*
;
Membrane Proteins/pharmacology*
;
Mitochondrial Proteins/pharmacology*
;
Oxidative Stress
;
Rats, Sprague-Dawley
9.LASS2/TMSG1 overexpression inhibits proliferation and promotes apoptosis of human lung cancer A549 cells possibly by upregulating ceramide and p38 MAPK to activate a signaling cascade.
Zheng Lu LIU ; Cheng Rui XUAN ; Xi Ran HAN ; Ze Ze ZHENG ; Rui XIAO ; Lu Ri BAO ; Xiao Yan XU
Journal of Southern Medical University 2023;43(2):166-174
OBJECTIVE:
To investigate the effects of LASS2/TMSG1 gene overexpression on proliferation and apoptosis of human lung cancer A549 cells and explore the possible mechanism.
METHODS:
We examined LASS2/TMSG1 expression level in a previously constructed A549 cell line overexpressing LASS2/TMSG1 using Western blotting. The proliferation and apoptosis of the cells were detected using colony-forming assay, CCK-8 assay, Hoechst/PI double staining and flow cytometry. Fourteen nude mice were randomized into 2 groups (n=7) to receive subcutaneous injection of A549 cells with or without LASS2/TMSG1 overexpression on the back of the neck, and the cell proliferation in vivo was observed. The expression levels of p38 MAPK protein and p-p38 MAPK protein in the xenografts were detected with Western blotting. ELISA was used to detect the levels of ceramide and p38 MAPK protein in cultured A549 cell supernatants and the xenografts in nude mice.
RESULTS:
Compared with the negative control cells, A549 cells with LASS2/TMSG1 overexpression had significantly lowered proliferation ability in vitro with increased early apoptosis rate (P < 0.05), and showed obvious growth inhibition after inoculation in nude mice(P < 0.05). Western blotting showed that in both cultured A549 cells and the xenografts in nude mice, LASS2/TMSG1 gene overexpression significantly increased the expression levels of p38 MAPK protein and p-p38 MAPK protein (P < 0.05); the results of ELISA also revealed significantly increased levels of ceramide and p38 MAPK protein in the cell supernatant andxenografts as well (P < 0.05).
CONCLUSION
Overexpression of LASS2/TMSG1 gene can significantly inhibit the proliferation and promote early apoptosis of human lung cancer A549 cells both in vitro and in vivo possibly by upregulating the expressions of ceramide and p38 MAPK protein to activate a signal transduction cascade.
Animals
;
Humans
;
Mice
;
A549 Cells
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Lung Neoplasms
;
Membrane Proteins/metabolism*
;
Mice, Nude
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Signal Transduction
;
Tumor Suppressor Proteins/metabolism*
10.Lnc-TMEM132D-AS1 overexpression reduces sensitivity of non-small cell lung cancer cells to osimertinib.
Qi Lin ZHAO ; Nan WANG ; Ya Wen LI ; Qing Tan WU ; Lan Xiang WU
Journal of Southern Medical University 2023;43(2):242-250
OBJECTIVE:
To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells.
METHODS:
The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR.
RESULTS:
The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway.
CONCLUSION
The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Lung Neoplasms/genetics*
;
RNA, Long Noncoding/metabolism*
;
Sincalide/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cell Movement
;
MicroRNAs/genetics*
;
Gene Expression Regulation, Neoplastic
;
Membrane Proteins/metabolism*

Result Analysis
Print
Save
E-mail