1.Phase separation in cGAS-STING signaling.
Frontiers of Medicine 2023;17(5):855-866
Biomolecular condensates formed by phase separation are widespread and play critical roles in many physiological and pathological processes. cGAS-STING signaling functions to detect aberrant DNA signals to initiate anti-infection defense and antitumor immunity. At the same time, cGAS-STING signaling must be carefully regulated to maintain immune homeostasis. Interestingly, exciting recent studies have reported that biomolecular phase separation exists and plays important roles in different steps of cGAS-STING signaling, including cGAS condensates, STING condensates, and IRF3 condensates. In addition, several intracellular and extracellular factors have been proposed to modulate the condensates in cGAS-STING signaling. These studies reveal novel activation and regulation mechanisms of cGAS-STING signaling and provide new opportunities for drug discovery. Here, we summarize recent advances in the phase separation of cGAS-STING signaling and the development of potential drugs targeting these innate immune condensates.
Humans
;
Nucleotidyltransferases/chemistry*
;
Signal Transduction/physiology*
;
Membrane Proteins/chemistry*
;
Phase Separation
2.ATAD3A gene variations in a family with Harel-Yoon syndrome.
Yi ZHENG ; Xinyu YU ; Ting ZHANG ; Lingwei HU ; Duo ZHOU ; Xinwen HUANG
Journal of Zhejiang University. Medical sciences 2023;52(6):738-743
An 11-day-old female neonate was admitted for cough with mouth foaming and feeding difficulties. The laboratory results indicated hyperlactatemia, elevated markers of myocardial injury and inflammation, and high levels of acylcarnitine octanoylcarnitine and decanoylcarnitine in tandem mass spectrometry. Ultrasonography and MRI suggested cardiac insufficiency and hypertrophic cardiomyopathy. Whole exome sequencing showed that both the proband and her elderly sister had a compound heterozygous variant of c.1492dup (p.T498Nfs*13) and c.1376T>C (p.F459S) in the ATAD3A gene, inherited from their father and mother, respectively. The diagnosis of Harel-Yoon syndrome was confirmed. The proband and her sister were born with clinical manifestations of metabolic acidosis, hyperlactatemia, feeding difficulties, elevated markers of myocardial injury as well as cardiac insufficiency, and both died in early infancy.
Humans
;
Infant, Newborn
;
Female
;
Aged
;
Mutation
;
Hyperlactatemia
;
ATPases Associated with Diverse Cellular Activities/chemistry*
;
Membrane Proteins/genetics*
;
Mitochondrial Proteins/genetics*
3.Effect of Rehmanniae Radix on depression-like behavior and hippocampal monoamine neurotransmitters of chronic unpredictable mild stress model rats.
Ping TIAN ; Wei ZHANG ; Kai-Yan LI ; Hong-Wei LI ; Kai MA ; De-En HAN
China Journal of Chinese Materia Medica 2022;47(17):4691-4697
To investigate the effect of Rehmanniae Radix on depression-like behavior and monoamine neurotransmitters of chronic unpredictable mild stress(CUMS) model rats. CUMS combined with isolated feeding was used to induce the depression model of rats. The depression-like behavior of rats was evaluated by sucrose preference test, open field test, and forced swim test. Hematoxylin-Eosin(HE) staining was used to investigate the pathological changes of neurons in the CA1 and CA3 area of hippocampus. Ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS) was used to detect the contents of 5-hydroxytryptamine(5-HT), 5-hydroxyindoleacetic acid(5-HIAA), dopamine(DA), 3,4-dihydroxyphenylacetic acid(DOPAC), homovanillic acid(HVA), norepinephrine(NE), and 3-methoxy-4-hydroxyphenyl glycol(MHPG) in rats. Western blot was used to detect the protein expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), and monoamine oxidase A(MAO-A) in the hippocampus of rats. Compared with the normal group, depressive-like behavior of rats was obvious in the model group. The arrangements of neurons in the CA1 and CA3 area of hippocampus were loose and disorderly. The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in the hippocampal area were decreased(P<0.01). The protein expression of TPH2 was decreased(P<0.01), but those of SERT and MAO-A were increased(P<0.01). In the Rehmanniae Radix groups with 1.8 g·kg~(-1) and 7.2 g·kg~(-1), the depression-like behavior of CUMS rats and pathological changes of neurons in CA1, CA3 area of hippocampus were improved. The protein expression of TPH2(P<0.05, P<0.01) was increased, and those of SERT and MAO-A were down-regulated(P<0.05, P<0.01). The levels of 5-HT, 5-HIAA, and 5-HT/5-HIAA in hippocampus were increased(P<0.05, P<0.01). The changes in DA, DOPAC, HVA, DA/(DOPAC +HVA), NE, DHPG, and NE/DHPG were not statistically significant. The results suggested that Rehmanniae Radix improved depression-like behavior of CUMS rats, and the mechanism might be related to the regulation of synthesis, transportation, and metabolism of 5-HT neurotransmitter in the hippocampus.
3,4-Dihydroxyphenylacetic Acid/pharmacology*
;
Animals
;
Antidepressive Agents/therapeutic use*
;
Chromatography, Liquid
;
Depression/drug therapy*
;
Disease Models, Animal
;
Dopamine
;
Eosine Yellowish-(YS)/pharmacology*
;
Hematoxylin/pharmacology*
;
Hippocampus/metabolism*
;
Homovanillic Acid/pharmacology*
;
Hydroxyindoleacetic Acid/metabolism*
;
Methoxyhydroxyphenylglycol/pharmacology*
;
Monoamine Oxidase/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Norepinephrine/pharmacology*
;
Plant Extracts
;
Rats
;
Rehmannia/chemistry*
;
Serotonin/metabolism*
;
Serotonin Plasma Membrane Transport Proteins/pharmacology*
;
Stress, Psychological/metabolism*
;
Tandem Mass Spectrometry
;
Tryptophan Hydroxylase/metabolism*
4.Salivary protease spectrum biomarkers of oral cancer.
Yun FENG ; Qian LI ; Jiao CHEN ; Ping YI ; Xin XU ; Yaping FAN ; Bomiao CUI ; Yu YU ; Xiaoying LI ; Yue DU ; Qianming CHEN ; Lingling ZHANG ; Jingjing JIANG ; Xuedong ZHOU ; Ping ZHANG
International Journal of Oral Science 2019;11(1):7-7
Proteases are important molecules that are involved in many physiological and pathological processes of the human body, such as growth, apoptosis and metastasis cancer cells. They are potential targets in cancer diagnosis and biotherapy. In this study, we analyzed the salivary protease spectrum of patients with oral squamous cell carcinoma (OSCC), oral benign masses and chronic periodontitis, as well as that of health, using human protease array kits, enzyme-linked immunosorbent assay, western blot and immunofluorescence. The salivary protease spectrum was found to be associated with oral diseases. For example, the saliva of patients with OSCC contained increased numbers of proteases than those of other oral diseases and health. The levels of matrix metalloproteinase (MMP)-1, MMP-2, MMP-10, MMP-12, A disintegrin and metalloprotease (ADAM)9, A disintegrin and metalloprotease with thrombospondin type 13 motifs (ADAMST13), cathepsin V and kallikrein 5 in the saliva of patients with OSCC were significantly increased compared with those of other groups. Taking MMP-1, cathepsin V, kallikrein 5 and ADAM9 as biomarkers of OSCC, cutoff values were199, 11.34, 9.29 and 202.55 pg·mL, respectively. From the area under the curve, sensitivity and specificity, the combination of cathepsin V/kallikrein5/ADAM9 was an optimal biomarker for diagnosing OSCC. Thus, analysis of the salivary protease spectrum may be an innovative and cost-efficient approach to evaluating the health status of the oral cavity. Specifically, increases in cathepsin V, kallikrein 5 and ADAM9 may be useful biomarkers in the screening and diagnosis of OSCC.
ADAM Proteins
;
Biomarkers, Tumor
;
analysis
;
Carcinoma, Squamous Cell
;
diagnosis
;
metabolism
;
Humans
;
Matrix Metalloproteinase 9
;
analysis
;
Membrane Proteins
;
Mouth Neoplasms
;
diagnosis
;
metabolism
;
Saliva
;
chemistry
5.Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Hong-Zhuo SHI ; Wen-Qiang CHANG ; Ming ZHANG ; Hong-Xiang LOU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):209-217
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
ATP-Binding Cassette Transporters
;
genetics
;
metabolism
;
Antifungal Agents
;
chemistry
;
metabolism
;
pharmacology
;
Azoles
;
pharmacology
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Candida albicans
;
chemistry
;
drug effects
;
metabolism
;
Cell Membrane
;
chemistry
;
metabolism
;
Coculture Techniques
;
Drug Resistance, Fungal
;
drug effects
;
Ergosterol
;
metabolism
;
Fungal Proteins
;
genetics
;
metabolism
;
Lipids
;
chemistry
;
Molecular Structure
;
Permeability
;
Phenyl Ethers
;
chemistry
;
metabolism
;
pharmacology
;
Sterols
;
chemistry
;
metabolism
;
Stilbenes
;
chemistry
;
metabolism
;
pharmacology
;
Triterpenes
;
chemistry
;
metabolism
;
pharmacology
6.MiR-1180 from bone marrow-derived mesenchymal stem cells induces glycolysis and chemoresistance in ovarian cancer cells by upregulating the Wnt signaling pathway.
Zhuo-Wei GU ; Yi-Feng HE ; Wen-Jing WANG ; Qi TIAN ; Wen DI
Journal of Zhejiang University. Science. B 2019;20(3):219-237
BACKGROUND:
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play an important role in cancer development and progression. However, the mechanism by which they enhance the chemoresistance of ovarian cancer is unknown.
METHODS:
Conditioned media of BM-MSCs (BM-MSC-CM) were analyzed using a technique based on microRNA arrays. The most highly expressed microRNAs were selected for testing their effects on glycolysis and chemoresistance in SKOV3 and COC1 ovarian cancer cells. The targeted gene and related signaling pathway were investigated using in silico analysis and in vitro cancer cell models. Kaplan-Merier survival analysis was performed on a population of 59 patients enrolled to analyze the clinical significance of microRNA findings in the prognosis of ovarian cancer.
RESULTS:
MiR-1180 was the most abundant microRNA detected in BM-MSC-CM, which simultaneously induces glycolysis and chemoresistance (against cisplatin) in ovarian cancer cells. The secreted frizzled-related protein 1 (SFRP1) gene was identified as a major target of miR-1180. The overexpression of miR-1180 led to the activation of Wnt signaling and its downstream components, namely Wnt5a, β-catenin, c-Myc, and CyclinD1, which are responsible for glycolysis-induced chemoresistance. The miR-1180 level was inversely correlated with SFRP1 mRNA expression in ovarian cancer tissue. The overexpressed miR-1180 was associated with a poor prognosis for the long-term (96-month) survival of ovarian cancer patients.
CONCLUSIONS
BM-MSCs enhance the chemoresistance of ovarian cancer by releasing miR-1180. The released miR-1180 activates the Wnt signaling pathway in cancer cells by targeting SFRP1. The enhanced Wnt signaling upregulates the glycolytic level (i.e. Warburg effect), which reinforces the chemoresistance property of ovarian cancer cells.
Adenosine Triphosphate/chemistry*
;
Adult
;
Aged
;
Bone Marrow Cells/cytology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cells, Cultured
;
Drug Resistance, Neoplasm/genetics*
;
Female
;
Flow Cytometry
;
Follow-Up Studies
;
Glycolysis
;
Humans
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs/genetics*
;
Middle Aged
;
Multivariate Analysis
;
Ovarian Neoplasms/genetics*
;
Up-Regulation
;
Wnt Signaling Pathway
7.Pharmacological evaluation of Mongolian medicine Syringa pinnatifolia fraction I against acute myocardial ischemia in mice.
Jun-Jun LI ; Fu-Xing GE ; Shun-Gang JIAO ; Sha-Na WUKEN ; Su-Yi-le CHEN ; Peng-Fei TU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2019;44(23):5240-5247
Syringa pinnatifolia Hemsl.( SP) is a representative Mongolian folk medicine with the effects of inhibiting Heyi related diseases,clearing heat and relieving pain. It has been used for the treatment of Heyi-induced heart tingling,heart palpitations,upset,insomnia and other symptoms. Total ethanol extract( T) and major fraction( M) of SP have been evaluated its anti-ischemic effects,and the mechanism was related to the regulation of cyclooxygenase( COX)-mediated inflammatory pathway and p53-mediated apoptosis pathway in our previous studies. This study reports the chemical fractionation on M by which to obtain subfractions( I and M_3),and the pharmacological evaluation of M,I,and M_3 against myocardial ischemia in mice. The result showed that I and M reduced the values of LVEDd and LVEDs,significantly increased EF and FS values,increased serum CK-MB and LDH levels in mice,and reduced in inflammatory cells infiltration and collagen deposition in the infarcted myocardial tissue,suggesting that M and I possess the same degree anti-myocardial is chemia equally whereas M_3 has no this effect. Related mechanism studies suggested that I can reduce the expression of COX-1,COX-2 and p53 protein in myocardial tissue in a dose-dependent manner. This study lays the foundation for further chemical segmentation and clarification of pharmacological substance groups,paving the way for the full use and benefits to be use of systematic biological methods to analyze the pharmacological basis of SP against myocardial ischemia.
Animals
;
Cyclooxygenase 1/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Heart/drug effects*
;
Medicine, Mongolian Traditional
;
Membrane Proteins/metabolism*
;
Mice
;
Myocardial Ischemia/drug therapy*
;
Myocardium/metabolism*
;
Plant Extracts/therapeutic use*
;
Syringa/chemistry*
;
Tumor Suppressor Protein p53/metabolism*
8.Ureaplasma urealyticum-derived lipid-associated membrane proteins introduce IL-6, IL-8, and TNF-α cytokines into human amniotic epithelial cells via Toll-like receptor 2.
Guang-Yong YE ; Ke-Yi WANG ; Qiao-di GUI ; Min WANG
Journal of Zhejiang University. Science. B 2018;19(8):654-661
OBJECTIVE:
The purpose of this study was to determine the role of Ureaplasma urealyticum-derived lipid-associated membrane proteins (LAMPs) in the host innate immune system, specifically their effect on Toll-like receptors (TLRs).
METHODS:
LAMPs were derived from U. urealyticum strains, and human amniotic epithelial cells (HAECs) were isolated from healthy full-term placentas. Cytokine concentrations were determined by enzyme-linked immunosorbent assay (ELISA) and TLR2 mRNA by real-time PCR. Expression of TLR2 was confirmed by Western blotting and immunohistochemistry.
RESULTS:
LAMPs induced HAECs to produce inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Cytokine production was reduced after blocking TLR2 using TLR2 inhibitor (anti-hTLR2-IgA).
CONCLUSIONS
LAMPs isolated from U. urealyticum induced TLR2-dependent up-regulation of inflammatory genes and cytokines in HAECs.
Amnion/cytology*
;
Amniotic Fluid/cytology*
;
Cytokines/metabolism*
;
Dose-Response Relationship, Drug
;
Epithelial Cells/metabolism*
;
Female
;
Humans
;
Inflammation
;
Interleukin-6/metabolism*
;
Interleukin-8/metabolism*
;
Lipids/chemistry*
;
Lipopolysaccharides/metabolism*
;
Membrane Proteins/metabolism*
;
Placenta/metabolism*
;
Pregnancy
;
Toll-Like Receptor 2/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation
;
Ureaplasma urealyticum/metabolism*
9.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics
10.Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy.
Mengqi LV ; Chongyuan WANG ; Fudong LI ; Junhui PENG ; Bin WEN ; Qingguo GONG ; Yunyu SHI ; Yajun TANG
Protein & Cell 2017;8(1):25-38
Mitophagy is an essential intracellular process that eliminates dysfunctional mitochondria and maintains cellular homeostasis. Mitophagy is regulated by the post-translational modification of mitophagy receptors. Fun14 domain-containing protein 1 (FUNDC1) was reported to be a new receptor for hypoxia-induced mitophagy in mammalian cells and interact with microtubule-associated protein light chain 3 beta (LC3B) through its LC3 interaction region (LIR). Moreover, the phosphorylation modification of FUNDC1 affects its binding affinity for LC3B and regulates selective mitophagy. However, the structural basis of this regulation mechanism remains unclear. Here, we present the crystal structure of LC3B in complex with a FUNDC1 LIR peptide phosphorylated at Ser17 (pS), demonstrating the key residues of LC3B for the specific recognition of the phosphorylated or dephosphorylated FUNDC1. Intriguingly, the side chain of LC3B Lys49 shifts remarkably and forms a hydrogen bond and electrostatic interaction with the phosphate group of FUNDC1 pS. Alternatively, phosphorylated Tyr18 (pY) and Ser13 (pS) in FUNDC1 significantly obstruct their interaction with the hydrophobic pocket and Arg10 of LC3B, respectively. Structural observations are further validated by mutation and isothermal titration calorimetry (ITC) assays. Therefore, our structural and biochemical results reveal a working model for the specific recognition of FUNDC1 by LC3B and imply that the reversible phosphorylation modification of mitophagy receptors may be a switch for selective mitophagy.
Crystallography, X-Ray
;
Membrane Proteins
;
chemistry
;
metabolism
;
Microtubule-Associated Proteins
;
chemistry
;
metabolism
;
Mitochondrial Degradation
;
Mitochondrial Proteins
;
chemistry
;
metabolism
;
Peptides
;
chemistry
;
metabolism
;
Phosphorylation
;
Protein Structure, Quaternary

Result Analysis
Print
Save
E-mail