1.Establishment and application of a cell model for LRRC8A physiological characteristic study.
Yan-Hong ZHOU ; Kai ZHENG ; Zhong-Xue XIA ; Xiao-Ming JIANG ; Wen-Hui DI ; Lian-Xiu XU ; Chao YING ; Feng HAO
Acta Physiologica Sinica 2019;71(4):555-561
The aim of the present study was to establish a cell model of volume-regulated anion channel subunit LRRC8A and investigate the physiological characteristics of LRRC8A. The eukaryotic expression vectors of LRRC8A and YFP-H148Q/I152L were constructed and transfected into Fischer rat thyroid (FRT) cells by Lipofectamine 2000. The FRT cell lines co-expressing LRRC8A and YFP-H148Q/I152L were obtained by antibiotic screening. The expression of LRRC8A and YFP-H148Q/I152L in FRT cells was detected by the inverted fluorescence microscope. The fluorescence quenching kinetic experiment was done to verify the function and effectiveness of the cell model. Then the cell model was utilized to study the physiological characteristics of LRRC8A, such as the characteristics of anion transport, the opening of LRRC8A by osmotic pressure, the effect of anion transport velocity, and the effect of chloride channel inhibitors on LRRC8A anion channel. The results of the inverted fluorescence microscope showed that LRRC8A was expressed on the cell membrane and YFP-H148Q/I152L was expressed in the cytoplasm. The results of fluorescence quenching kinetic test showed that under the condition of low osmotic state, LRRC8A could transport some kinds of anions, such as iodine and chloride ions. Osmotic pressure played a key role in the regulation of LRRC8A volume-regulated anion channel opening. Chloride channel inhibitors inhibited ion transport of LRRC8A channel in a dose-dependent manner. It is suggested that LRRC8A has the characteristics of classic volume-regulated anion channels by using the cell model of FRT cells co-expressing LRRC8A and YFP-H148Q/I152L.
Animals
;
Anions
;
Cells, Cultured
;
Chloride Channels
;
antagonists & inhibitors
;
Ion Transport
;
Membrane Proteins
;
physiology
;
Microscopy, Fluorescence
;
Rats
;
Rats, Inbred F344
;
Thyroid Gland
;
cytology
;
Transfection
2.Intracellular and extracellular TGF-β signaling in cancer: some recent topics.
Kohei MIYAZONO ; Yoko KATSUNO ; Daizo KOINUMA ; Shogo EHATA ; Masato MORIKAWA
Frontiers of Medicine 2018;12(4):387-411
Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.
Drug Discovery
;
Humans
;
Lung Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
Membrane Proteins
;
metabolism
;
Pancreatic Neoplasms
;
drug therapy
;
immunology
;
metabolism
;
Signal Transduction
;
drug effects
;
physiology
;
T-Lymphocytes, Regulatory
;
metabolism
;
Transforming Growth Factor beta
;
antagonists & inhibitors
;
immunology
;
metabolism
3.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
OBJECTIVE:
To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
METHODS:
H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
RESULTS:
Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
CONCLUSIONS
Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
Adenosine Triphosphate
;
analysis
;
Apoptosis
;
drug effects
;
Benzyl Alcohols
;
antagonists & inhibitors
;
pharmacology
;
Caspase 3
;
analysis
;
Cell Line
;
Cell Survival
;
drug effects
;
Cyclosporine
;
pharmacology
;
Cytochromes c
;
analysis
;
Glucosides
;
antagonists & inhibitors
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis
4.LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen.
Weili LIU ; Ting LI ; Pingzhang WANG ; Wanchang LIU ; Fujun LIU ; Xiaoning MO ; Zhengyang LIU ; Quansheng SONG ; Ping LV ; Guorui RUAN ; Wenling HAN
Protein & Cell 2018;9(9):785-798
Leukocyte differentiation antigens (LDAs) play important roles in the immune system, by serving as surface markers and participating in multiple biological activities, such as recognizing pathogens, mediating membrane signals, interacting with other cells or systems, and regulating cell differentiation and activation. Data mining is a powerful tool used to identify novel LDAs from whole genome. LRRC25 (leucine rich repeat-containing 25) was predicted to have a role in the function of myeloid cells by a large-scale "omics" data analysis. Further experimental validation showed that LRRC25 is highly expressed in primary myeloid cells, such as granulocytes and monocytes, and lowly/intermediately expressed in B cells, but not in T cells and almost all NK cells. It was down-regulated in multiple acute myeloid leukemia (AML) cell lines and bone marrow cells of AML patients and up-regulated after all-trans retinoic acid (ATRA)-mediated granulocytic differentiation in AML cell lines and acute promyelocytic leukemia (APL; AML-M3, FAB classification) cells. Localization analysis showed that LRRC25 is a type I transmembrane molecule. Although ectopic LRRC25 did not promote spontaneous differentiation of NB4 cells, knockdown of LRRC25 by siRNA or shRNA and knockout of LRRC25 by the CRISPR-Cas9 system attenuated ATRA-induced terminal granulocytic differentiation, and restoration of LRRC25 in knockout cells could rescue ATRA-induced granulocytic differentiation. Therefore, LRRC25, a potential leukocyte differentiation antigen, is a key regulator of ATRA-induced granulocytic differentiation.
Antigens, Differentiation
;
immunology
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line, Tumor
;
Granulocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Humans
;
Leukocytes
;
cytology
;
drug effects
;
immunology
;
metabolism
;
Membrane Proteins
;
antagonists & inhibitors
;
immunology
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Tretinoin
;
pharmacology
5.Research progress on mechanism of Nix-mediated mitophagy.
Yanrong ZHENG ; Xiangnan ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):92-96
Autophagy is fundamental to maintain cellular homeostasis. As one kind of the most well-studied selective autophagy, autophagy of mitochondria (mitophagy)is crucial for the clearance of damaged mitochondria. Mitophagy dysfunction has been proved to be closely associated with many human diseases. Nix is a key protein for mitophagy during the maturation of reticulocytes. However, the detailed molecular mechanisms underlying Nix-mediated mitophagy are not fully understood. This article summarizes three possible working models of Nix in mitophagy induction. Firstly, Nix can interplay with Parkin, another important protein for mitophagy, to initiate mitophagy. Secondly, Nix can serve as a receptor for autophagy machinery by interacting with Atg8 family through its LIR motif. Finally, as a BH3-only protein, Nix can compete with Beclin-1 to bind other members of Bcl-2 family resulting in increased free Beclin-1 in cytosol, which further promotes autophagy flux.
Autophagy
;
genetics
;
physiology
;
Autophagy-Related Protein 8 Family
;
physiology
;
Beclin-1
;
physiology
;
Membrane Proteins
;
physiology
;
Mitochondria
;
genetics
;
physiology
;
Mitochondrial Degradation
;
genetics
;
physiology
;
Protein Interaction Domains and Motifs
;
Proto-Oncogene Proteins
;
physiology
;
Proto-Oncogene Proteins c-bcl-2
;
antagonists & inhibitors
;
Tumor Suppressor Proteins
;
physiology
;
Ubiquitin-Protein Ligases
;
physiology
6.Inhibiting HSP70 expression enhances cisplatin sensitivity of cervical cancer cells.
Jian LIU ; Jing LIU ; Sheng-Ze LI ; Ying-Ao ZHENG ; Su-Yang GUO ; Xiu WANG
Journal of Southern Medical University 2016;37(4):475-481
OBJECTIVETo investigate the relationship between sensitivity to cisplatin (DDP) and the expression of HSP70 in cervical cancer cells in vitro.
METHODSCervical cancer Hela229 cells treated with different concentrations of DDP and the HSP70 inhibitor (PFT-µ) were examined for cell viability using MTT assay and colony forming ability. The cell apoptosis was analyzed by flow cytometry with propidium iodide staining and DAPI staining, and JC-1 staining was used to determine mitochondrial membrane potential. The expressions of HSP70, Bcl-2, Bax and caspase-3 were measured with Western blotting. A nude mouse model bearing Hela229 cell xenograft was used to evaluate the effect of DDP and PFT-µ on tumor growth.
RESULTSHela229 cells expressed a higher level of HSP70 than normal cervical cells. The combined use of PFT-µ significantly enhanced the inhibitory effect of DDP (P<0.01) and increased the cell apoptosis in Hela229 cells. JC-1 staining demonstrated that DDP combined with PFT-µ more obviously reduced mitochondrial membrane potential. DDP combined with PFT-µ more strongly lowered Bcl-2 expression and increased the expressions of casepase-3 and Bax than DDP alone. In the nude mouse model, PFT-µ significantly enhanced DDP sensitivity of Hela229 cell xenografts (P<0.01).
CONCLUSIONSInhibition of HSP70 expression can enhance the sensitivity of cervical cancer cell to DDP both in vivo and in vitro possibly by promoting cell apoptosis, suggesting the potential of HSP70 as a new target for gene therapy of cervical cancer.
Animals ; Antineoplastic Agents ; pharmacology ; Apoptosis ; Caspase 3 ; metabolism ; Cell Proliferation ; Cell Survival ; Cisplatin ; pharmacology ; Drug Resistance, Neoplasm ; Female ; HSP70 Heat-Shock Proteins ; antagonists & inhibitors ; HeLa Cells ; Humans ; Membrane Potential, Mitochondrial ; Mice ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Sulfonamides ; pharmacology ; Uterine Cervical Neoplasms ; drug therapy ; pathology ; Xenograft Model Antitumor Assays ; bcl-2-Associated X Protein ; metabolism
7.Effect of inhibiting TIM-4 function in Kupffer cells on liver graft rejection in mice.
Xue-Qiang LI ; Xu-Hong LI ; Shi-Gang DUAN ; Xue-Song XU ; Yi-Ming LIU ; Jin-Zheng LI ; Jian-Ping GONG ; Hao WU
Journal of Southern Medical University 2016;37(4):451-459
OBJECTIVETo investigate the effects of inhibiting TIM-4 function in Kupffer cells (KCs) on liver graft rejection in mice and explore the underlying mechanism.
METHODSMouse models of orthotopic liver transplantation were treated with a control mAb group and TIM-4 mAb. The activated KCs were assayed with immunohistochemistry after operation. The expression of TIM-4 in KCs were assayed with Western blotting and RT-PCR and the levels of AST, ALT, TBIL, TNF-α, IFN-γ and CCL2 were assayed detected. The expression of TIM-4 in KCs was observed with laser confocal microscopy. HE staining was used to observe the microstructure of the liver tissues, and the number of CD25Foxp3T cells was determined using with flow cytometry; the proteins levels of p-P65and p-P38 were assayed with Western blotting. The donor mice were treated with clodronate liposomes to destroy the KCs in the liver before transplantation, and the liver grafts were examined for graft rejection.
RESULTSThe number of activated KCs in the liver graft increased progressively over time. Compared with the sham-operated group, the liver graft showed significantly increased TIM-4 protein and mRNA levels at 1, 3, and 7 days after transplantation (P<0.05) and increased levels of AST, ALT, TBIL, TNF-α, IFN-γ and CCL2 at 7 days (P<0.05). The graft in TIM-4 mAb group showed mild pathological changes with a mean RAI score of 2.67∓0.75, which was significantly lower than that in control mAb group (P<0.05). The mean survival time of the recipient mice was 53.8∓6.4 days in TIM-4 mAb group, significantly longer than that in the control mAB group (14.5∓2.9 days, P<0.05). Donor treatment with clodronate liposomes resulted in comparable RAI scores in TIM-4 mAb and control mAb groups (8.01∓0.64 vs 7.93∓0.56, P>0.05). The protein levels of p-P65 and p-P38 in TIM-4 mAb group were significantly lower than those in control mAb group (P<0.05), and CD25Foxp3T cells in the liver graft increased significantly in TIM-4 mAb group.
CONCLUSIONInhibition of TIM-4 function in KCs reduces the production of inflammatory factors after liver transplantation possibly by inhibiting the NF-κB and MAPK signaling pathways and promoting the proliferation of Foxp3Treg cells to induce allograft tolerance.
Animals ; Antibodies, Monoclonal ; pharmacology ; Graft Rejection ; Immunohistochemistry ; Kupffer Cells ; drug effects ; metabolism ; Liver ; surgery ; Liver Transplantation ; Male ; Membrane Proteins ; antagonists & inhibitors ; Mice ; NF-kappa B ; metabolism ; T-Lymphocytes, Regulatory ; immunology
8.Flotillin-1 downregulates K(+) current by directly coupling with Kv2.1 subunit.
Rui LIU ; Guang YANG ; Meng-Hua ZHOU ; Yu HE ; Yan-Ai MEI ; Yu DING
Protein & Cell 2016;7(6):455-460
Chloroquine
;
pharmacology
;
Down-Regulation
;
Gene Expression
;
drug effects
;
HEK293 Cells
;
Humans
;
Leupeptins
;
pharmacology
;
Membrane Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Microscopy, Fluorescence
;
Protein Binding
;
Protein Subunits
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Shab Potassium Channels
;
genetics
;
metabolism
9.The Hsp90 inhibitor FW-04-806 suppresses Bcr/Abl-mediated growth of leukemia cells by inhibiting proliferation and inducing apoptosis.
Yingli KONG ; Wei HUANG ; Pinrong CAO ; Lihong CHEN ; Yanmei LUO ; Bingying SHE ; Jianhua XU ; Min YE
Chinese Journal of Oncology 2015;37(12):890-898
OBJECTIVETo investigate the antitumor efficacy and mechanism of HSP90 inhibitor FW-04-806 against Bcr/Abl(+) leukemia K562 and HL60 cells and their mechanisms of action.
METHODSMTT assay was used to assess the proliferation-inhibiting effect of FW-04-806. Cell cycle was analyzed with propidium iodide by flow cytometry. Cell apoptosis was determined using the FITC mV apoptosis detection kit. Western blot was applied to reveal the protein expression of related proliferative and apoptotic signaling pathways. The changes of mitochondrial membrane potential were detected by flow cytometry. Protein-protein interactions was shown by co-immunoprecipitation. The level of mRNA was assessed by real-time RT-PCR.
RESULTSFW-04-806 obviously inhibited cell proliferation in the HL60, K562 and HL60/Bcr-Abl cell lines, with an IC50 of (30.89 ± 0.12) µmol/L, (9.76 ± 0.19) µmol/L and (8.03 ± 0.26) µmol/L, respectively (P<0.001). Compared with the vehicle group, the two increasing doses of FW-04-806 showed inhibition of tumor growth at a rate of (17.40 ± 0.34)% and (34.33 ± 5.00)%, respectively, in the K562 cell line groups (P=0.003), and (18.90 ± 1.45)% and (35.60 ± 3.55)% (P=0.001) in the HL60/Bcr-Abl cell line groups. FW-04-806 dissociated Hsp90/Cdc37 chaperon/co-chaperon complex, followed by degradation of the Hsp90 proteins through proteasome pathway without affecting mRNA expression. FW-04-806 induced apoptosis and led to G2/M arrest.
CONCLUSIONOur findings indicate that FW-04-806 displays potential antitumor effect by suppressing the proliferation and apoptosis in Bcr/Abl(+) leukemia cells in vivo.
Apoptosis ; drug effects ; Cell Cycle ; Cell Proliferation ; drug effects ; Fusion Proteins, bcr-abl ; HL-60 Cells ; HSP90 Heat-Shock Proteins ; antagonists & inhibitors ; Humans ; K562 Cells ; Leukemia ; drug therapy ; metabolism ; pathology ; Membrane Potential, Mitochondrial ; Oxazoles ; pharmacology ; RNA, Messenger ; metabolism ; Signal Transduction
10.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail