1.Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex.
Yan-Lin HE ; Kai WANG ; Qian-Ru ZHAO ; Yan-Ai MEI
Neuroscience Bulletin 2018;34(5):759-768
Cyproheptadine (CPH), a first-generation antihistamine, enhances the delayed rectifier outward K current (I) in mouse cortical neurons through a sigma-1 receptor-mediated protein kinase A pathway. In this study, we aimed to determine the effects of CPH on neuronal excitability in current-clamped pyramidal neurons in mouse medial prefrontal cortex slices. CPH (10 µmol/L) significantly reduced the current density required to generate action potentials (APs) and increased the instantaneous frequency evoked by a depolarizing current. CPH also depolarized the resting membrane potential (RMP), decreased the delay time to elicit an AP, and reduced the spike threshold potential. This effect of CPH was mimicked by a sigma-1 receptor agonist and eliminated by an antagonist. Application of tetraethylammonium (TEA) to block I channels hyperpolarized the RMP and reduced the instantaneous frequency of APs. TEA eliminated the effects of CPH on AP frequency and delay time, but had no effect on spike threshold or RMP. The current-voltage relationship showed that CPH increased the membrane depolarization in response to positive current pulses and hyperpolarization in response to negative current pulses, suggesting that other types of membrane ion channels might also be affected by CPH. These results suggest that CPH increases the excitability of medial prefrontal cortex neurons by regulating TEA-sensitive I channels as well as other TEA-insensitive K channels, probably I and inward-rectifier Kir channels. This effect of CPH may explain its apparent clinical efficacy as an antidepressant and antipsychotic.
Animals
;
Cyproheptadine
;
pharmacology
;
Female
;
Histamine H1 Antagonists
;
pharmacology
;
Membrane Potentials
;
drug effects
;
physiology
;
Mice, Inbred C57BL
;
Patch-Clamp Techniques
;
Potassium Channel Blockers
;
pharmacology
;
Potassium Channels
;
metabolism
;
Prefrontal Cortex
;
drug effects
;
physiology
;
Pyramidal Cells
;
drug effects
;
physiology
;
Receptors, sigma
;
agonists
;
metabolism
;
Tetraethylammonium
;
pharmacology
;
Tissue Culture Techniques
2.The effect of niflumic acid and blocker of calcium channel on the desensitization of gamma aminobutyric acid-activated current.
Li LI ; Yang WANG ; Ke-Tao MA ; Hong-Ju CHENG ; Lei ZHAO ; Jun-Qiang SI
Chinese Journal of Applied Physiology 2013;29(2):128-132
OBJECTIVETo explore the modulatory effect of niflumic acid and blocker of calcium channel on the desensitization of gamma aminobutyric acid (GABA)-activated currents in dorsal root ganglion(DRG) neurons from rat.
METHODSThe whole-cell patch-clamp technique was used to observe the modulatory effect of niflumic acid and blocker of calcium channel on the desensitization of GABA-activated currents in neurons freshly dissociated from rat DRG neurons.
RESULTSApplication of GABA (0.1-1 000 micromol/L) could induce concentration-dependent inward currents in some cells (212/223, 95.11%). GABA-(100 micromol/L) activated currents was (1.32 +/- 0.74) nA (n = 84). However, pre-application of niflumic acid (1-100 micromol/L) and nitrendipine (specific blocker of L-calcium channel)(0.1-30 micromol/L) could inhibit the GABA-activated inward current which was identified to be GABAA receptor-mediated current. The inhibitory effects of niflumic acid and nitrendipine were concentration-dependent. The suppression rate of 10 micromol/L niflumic acid and nitrendipine to GABA-activated currents were (31.60% +/- 4.87%) (n = 19) and (43.60% < or = 5.10%) (n = 5), respectively. The desensitization of GABA-activated currents had double exponential characteristic. Tau value was (14.68 +/- 5.11) s (n = 6) and (175.8 +/- 42.67) s (n = 6, r = 0.9647), respectively. Pre-application of niflumic acid (100 micromol/L) and nickel chloride (nonspecific blocker of L-calcium channel) (100 micromol/L) altered tau value of the desensitization of GABA-activated currents, tau value reduced for (4.64 +/- 2.21) s (n = 3), (43.70 +/- 14.34) s ( n = 3, r = 0.9548) and (4.64 +/- 2.21) s (n = 3), (43.70 +/- 14.34) s (n = 3, r = 0.9721).
CONCLUSIONPre-application of niflumic acid exerts a more strong inhibitory effect on the peak value of GABA-activated current, which possibly is through blocking the calcium-activated chloride ion channel to accelerate the desensitization of GABA-activated currents.
Animals ; Animals, Newborn ; Calcium Channel Blockers ; pharmacology ; Calcium Channels, L-Type ; drug effects ; Ganglia, Spinal ; drug effects ; physiology ; Membrane Potentials ; drug effects ; physiology ; Neurons ; drug effects ; physiology ; Niflumic Acid ; pharmacology ; Nitrendipine ; pharmacology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; gamma-Aminobutyric Acid ; pharmacology
3.Effects of ropivacaine on GABA-activated currents in isolated dorsal root ganglion neurons in rats.
Yue YANG ; Jun-Qiang SI ; Chao FAN ; Ke-Tao MA ; Hong-Jv CHENG ; Li LI
Chinese Journal of Applied Physiology 2013;29(3):263-266
OBJECTIVETo investigate the effects of ropivacaine on Gamma-aminobutyric acid(GABA)-activated currents in dorsal root ganglion (DRG) neurons in rats and discuss the analgesia mechanism of ropivacaine.
METHODSBy means of using whole-cell patch-clamp technique, to investigate the modulatory effects of ropivacaine on GABA-activated currents (I(GABA)) in acutely isolated dorsal root ganglion neurons.
RESULTS(1) In 48 out of 73DRG cells (65.7%, 48/73), to perfusion ropivacaine bromide (0.1 - 1 000 micromol/L) were sensitive. Which produce in 0 to 380 pA current. (2) The majority of the neurons examined (74.5%, 73/98) were sensitive to GABA. Concentration of 1 - 1 000 micromol/L GABA could activate a concentration-dependent inward current, which manifested obvious desensitization, and the inward currents could be blocked byGABA-receptor selective antagonist of bicuculline (100 micromol/L). (3) After the neurons were treated with ropivacaine (0.1 - 1000 micromol/L) prior to the application of GABA (100 micromol/L) 30 s, GABA currents were obviously increased. Ropivacaine could make dose-response curve of the GABA up, EC50 is 23.46 micromol/L. Ropivacaine shifted the GABA dose-response curve upward and increased the maximum response to the contrast about 153%.
CONCLUSIONThe enhancement of ropivacaine to DRG neurons activation of GABA current, can lead to enhancement of pre-synaptic inhibition at the spinal cord level. This may be one of the reasons for the anesthetic effect and analgesia for ropivacaine in epidural anesthesia.
Amides ; pharmacology ; Animals ; Ganglia, Spinal ; cytology ; physiology ; Membrane Potentials ; drug effects ; Neurons ; cytology ; drug effects ; physiology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; physiology
4.Methionine Enhances the Contractile Activity of Human Colon Circular Smooth Muscle In Vitro.
Eun Kyung CHOE ; Jung Sun MOON ; Kyu Joo PARK
Journal of Korean Medical Science 2012;27(7):777-783
Effective drug to manage constipation has been unsatisfactory. We sought to determine whether methionine has effect on the human colon. Human colon tissues were obtained from the specimens of colon resection. Microelectrode recording was performed and contractile activity of muscle strips and the propagation of the contractions in the colon segment were measured. At 10 microM, methionine depolarized the resting membrane potential (RMP) of circular muscle (CM) cells. In the CM strip, methionine increased the amplitude and area under the curve (AUC) of contractions. In the whole segment of colon, methionine increased the amplitude and AUC of the high amplitude contractions in the CM. These effects on contraction were maximal at 10 microM and were not observed in longitudinal muscles in both the strip and the colon segment. Methionine reversed the effects of pretreatment with sodium nitroprusside, tetrodotoxin and Nw-oxide-L-arginine, resulting in depolarization of the RMP, and increased amplitude and AUC of contractions in the muscle strip. Methionine treatment affected the wave pattern of the colon segment by evoking small sized amplitude contractions superimposed on preexisting wave patterns. Our results indicate that a compound mimicking methionine may provide prokinetic functions in the human colon.
Area Under Curve
;
Arginine/pharmacology
;
Colon/drug effects/physiology
;
Humans
;
Membrane Potentials/drug effects
;
Methionine/*pharmacology
;
Microelectrodes
;
Muscle Contraction/*drug effects
;
Muscle, Smooth/drug effects/*physiology
;
Nitroprusside/pharmacology
;
Tetrodotoxin/pharmacology
5.Repeated morphine pretreatment reduces glutamatergic synaptic potentiation in the nucleus accumbens induced by acute morphine exposure.
Xiao-Jie WU ; Jing ZHANG ; Chun-Ling WEI ; Zhi-Qiang LIU ; Wei REN
Acta Physiologica Sinica 2012;64(2):170-176
Repeated exposure to morphine leads to the addiction, which influences its clinical application seriously. The glutamatergic projection from prefrontal cortex (PFC) to the nucleus accumbens (NAc) plays an important role in rewarding effects. It is still unknown whether morphine exposure changes PFC-NAc synaptic transmission. To address this question, in vivo field excitatory postsynaptic potentials (fEPSPs) induced by electric stimulating PFC-NAc projection fibers were recorded to evaluate the effect of acute morphine exposure (10 mg/kg, s.c.) on glutamatergic synaptic transmission in NAc shell of repeated saline/morphine pretreated rats. It was showed that acute morphine exposure enhanced fEPSP amplitude and reduced paired-pulse ratio (PPR) in saline pretreated rats, which could be reversed by following naloxone injection (1 mg/kg, i.p.), an opiate receptor antagonist. However, repeated morphine pretreatment significantly inhibited both the enhancement of fEPSP amplitude and reduction of PPR induced by acute morphine exposure. Those results indicate that the initial morphine exposure enhances PFC-NAc synaptic transmission by pre-synaptic mechanisms, whereas morphine pretreatment occludes this effect.
Animals
;
Excitatory Postsynaptic Potentials
;
drug effects
;
physiology
;
Female
;
Glutamate Plasma Membrane Transport Proteins
;
metabolism
;
Glutamates
;
metabolism
;
Morphine
;
administration & dosage
;
Morphine Dependence
;
physiopathology
;
Nucleus Accumbens
;
physiopathology
;
Prefrontal Cortex
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
6.Mg(2+) inhibits ATP-activated current mediated by rat P2X4 receptors expressed in Xenopus oocytes.
Fang PENG ; Yu-Qin ZHANG ; Yan ZENG ; Yan-Ling ZHOU
Acta Physiologica Sinica 2012;64(1):75-81
To investigate the modulation of Mg(2+) on rat P2X4 receptors and its underlying mechanism, we transcribed cDNA coding for wild-type and mutant P2X4 receptors to cRNA in vitro, injected the cRNA to oocytes of Xenopus laevis using the microinjection technique and revealed the effect of Mg(2+) on ATP-activated currents (I(ATP)) mediated by P2X4 receptors using the two-electrode whole-cell voltage clamp technique. The effects of extracellular Mg(2+) on I(ATP) were as follows: (1) In oocytes expressing P2X4 receptors, Mg(2+) with concentration ranging from 0.5-10 mmol/L inhibited the amplitude of I(ATP) in a concentration-dependent and reversible manner, with a 50% inhibitory concentration value (IC(50)) of (1.24 ± 0.07) mmol/L for current activated by 100 μmol/L ATP. (2) Mg(2+) (1 mmol/L) shifted the dose-response curve for I(ATP) right-downward without changing the EC(50), but reduced the maximal current (E(max)) by (42.0 ± 2.1)%. (3) After being preincubated with Mg(2+) for 80 s, the inhibitory effect of the Mg(2+) on I(ATP) reached the maximum. (4) The inhibition of Mg(2+) on I(ATP) was independent of membrane potential from -120 mV to +60 mV. (5) Compared with the current activated by 100 μmol/L ATP in the wild-type P2X4 receptors, mutant P2X4 D280Q responded to the application of 100 μmol/L ATP with a smaller current. The peak current was only (4.12 ± 0.15)% of that seen in wild-type receptors. Mutant P2X4 D280E responded to ATP stimulation with a current similar to that observed in cells expressing wild-type receptors. (6) When Asp280 was removed from P2X4, the current amplitude of I(ATP) was increased almost one-fold, and Mg(2+) with concentration ranging from 0.5-10 mmol/L did not affect the I(ATP) significantly. The results suggest that Mg(2+) inhibits I(ATP) mediated by P2X4 receptors non-competitively, reversibly, concentration-dependently, time-dependently and voltage-independently. The inhibitory effect of Mg(2+) might be realized by acting on the site Asp280 of the P2X4 receptors.
Adenosine Triphosphate
;
antagonists & inhibitors
;
pharmacology
;
Animals
;
Female
;
Magnesium
;
pharmacology
;
Membrane Potentials
;
drug effects
;
Oocytes
;
metabolism
;
physiology
;
Patch-Clamp Techniques
;
Rats
;
Receptors, Purinergic P2X4
;
genetics
;
physiology
;
Xenopus laevis
7.Diclofenac inhibits Kv1.3 and Kir2.1 expressions in human macrophages and affects the membrane potential and foam cell formation.
Xinjun LEI ; Wei ZHANG ; Xianfeng LIN ; Dongqi WANG ; Zuyi YUAN
Journal of Southern Medical University 2012;32(8):1067-1073
OBJECTIVETo investigate the effect of diclofenac on the expression of Kv1.3 and Kir2.1 channels in human macrophages and the membrane potential and foaming process of the macrophages.
METHODSThe effect of diclofenac on the expression of Kv1.3 and Kir2.1 channels in cultured human monocyte-derived macrophages was investigated using real-time RT-PCR and Western blotting, and its effect on the membrane potential was analyzed with optical mapping of the membrane potential with voltage-sensitive dyes. The ratio of cholesterol ester (CE) in the macrophages following intake of oxidized low-density lipoprotein (OxLDL) was analyzed by an enzymatic fluorometric method.
RESULTSThe expression of Kv1.3 and Kir2.1 channels in the macrophages were down-regulated by diclofenac (1.5 µmol/L and 15 µmol/L). Compared with those in the control group, Kv1.3 mRNA expression was reduced by over 80% and 90% (P<0.05), and Kir2.1 mRNA by over 20% and 30% (P>0.05), respectively; both their protein expression was reduced by over 10% and 60% with a dose- dependent effect (P<0.05). Diclofenac at the two doses dose-dependently reduced the surface fluorescence intensity of the macrophage, and the membrane potential was decreased by 28% and 54%, respectively (P<0.05). Incubation of the macrophages with 30 mg/L OxLDL for 60 h caused an obvious enlargement of the cell volume and deposition of numerous lipid granules in cytoplasm, resulting also in a CE/TC ratio over 50% (P<0.05). Diclofenac at 1.5 and 15 µmol/L both significantly decreased the CE/TC ratio to (23.624∓3.34)% and (13.601∓2.916)% (P<0.05), respectively, but this effect did not show a dose-response relationship (P>0.05).
CONCLUSIONDiclofenac can significant down-regulate the expression of Kv1.3 and Kir2.1 channels in human macrophages, lower their membrane potential and inhibit the process of foam cell formation.
Cells, Cultured ; Diclofenac ; pharmacology ; Foam Cells ; cytology ; drug effects ; Humans ; Kv1.3 Potassium Channel ; metabolism ; Macrophages ; drug effects ; metabolism ; physiology ; Membrane Potentials ; drug effects ; Potassium Channels, Inwardly Rectifying ; metabolism
8.18β-glycyrrhetinic acid inhibits outward current of vascular smooth muscle cells of arterioles.
Ke-Tao MA ; Xin-Zhi LI ; Li LI ; Zhong-Shuang ZHANG ; Wen-Yan SHI ; Jun-Qiang SI
Acta Physiologica Sinica 2011;63(6):549-554
The aim of the present study was to investigate the effect of 18β-glycyrrhetinic acid (18βGA) on the membrane current of vascular smooth muscle cells (VSMCs) in arteriole. Guinea pig anterior inferior cerebellar artery (AICA) and mesenteric artery (MA) were isolated, and single VSMCs were harvested using digestion with papain and collagenase IA. Outward currents of the VSMCs were recorded by whole-cell patch clamp technique. Results were shown as below: (1) 1 mmol/L 4-AP and 1 mmol/L TEA both could partially inhibit the whole-cell current of VSMCs in arterioles. (2) 18βGA inhibited the outward current of VSMCs in a concentration-dependent manner. The inhibitory rates of 10, 30 and 100 μmol/L 18βGA on the membrane current of VSMCs (+40 mV) were (25.3 ± 7.1)%, (43.1 ± 10.4)% and (68.4 ± 3.9)% respectively in AICA, and (13.2 ± 5.6)%, (34.2 ± 4.0)% and (59.3 ± 7.3)% respectively in MA. There was no significant difference between the inhibitory effects of 18βGA on AICA and MA. 18βGA also inhibited the outward current of VSMCs in a voltage-dependent manner. 18βGA induced a more pronounced inhibition of the outward current from 0 to +40 mV, especially at +40 mV. (3) With the pretreatment of 10 mmol/L TEA, the inhibitory effect of 18βGA on the membrane current of VSMCs was significantly abolished. These results suggest that the outward current of VSMCs in arterioles is mediated by voltage-dependent K(+) channels (K(v)) and big conductance calcium-activated K(+) channels (BK(Ca)), which can be inhibited by 18βGA in concentration- and voltage-dependent way.
Animals
;
Arterioles
;
physiology
;
Cerebellum
;
blood supply
;
Female
;
Gap Junctions
;
physiology
;
Glycyrrhetinic Acid
;
analogs & derivatives
;
pharmacology
;
Guinea Pigs
;
In Vitro Techniques
;
Male
;
Membrane Potentials
;
drug effects
;
Mesenteric Arteries
;
cytology
;
physiology
;
Muscle, Smooth, Vascular
;
cytology
;
physiology
;
Myocytes, Smooth Muscle
;
physiology
;
Patch-Clamp Techniques
;
Potassium Channels, Calcium-Activated
;
physiology
;
Potassium Channels, Voltage-Gated
;
physiology
9.ERp44 C160S/C212S mutants regulate IP3R1 channel activity.
Congyan PAN ; Ji ZHENG ; Yanyun WU ; Yingxiao CHEN ; Likun WANG ; Zhansong ZHOU ; Wenxuan YIN ; Guangju JI
Protein & Cell 2011;2(12):990-996
Previous studies have indicated that ERp44 inhibits inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release (IICR) via IP(3)R(1), but the mechanism remains largely unexplored. Using extracellular ATP to induce intracellular calcium transient as an IICR model, Ca(2+) image, pull down assay, and Western blotting experiments were carried out in the present study. We found that extracellular ATP induced calcium transient via IP(3)Rs (IICR) and the IICR were markedly decreased in ERp44 overexpressed Hela cells. The inhibitory effect of C160S/C212S but not C29S/T396A/ΔT(331-377) mutants of ERp44 on IICR were significantly decreased compared with ERp44. However, the binding capacity of ERp44 to L3V domain of IP(3)R(1) (1L3V) was enhanced by ERp44 C160S/C212S mutation. Taken together, these results suggest that the mutants of ERp44, C160/C212, can more tightly bind to IP(3)R(1) but exhibit a weak inhibition of IP(3)R(1) channel activity in Hela cells.
Adenosine Triphosphate
;
pharmacology
;
Amino Acid Substitution
;
Biological Transport
;
drug effects
;
physiology
;
Blotting, Western
;
Calcium
;
metabolism
;
Calcium Signaling
;
drug effects
;
physiology
;
HeLa Cells
;
Humans
;
Immunoprecipitation
;
Inositol 1,4,5-Trisphosphate
;
metabolism
;
Inositol 1,4,5-Trisphosphate Receptors
;
physiology
;
Membrane Potentials
;
drug effects
;
physiology
;
Membrane Proteins
;
genetics
;
metabolism
;
Microscopy, Confocal
;
Molecular Chaperones
;
genetics
;
metabolism
;
Mutation
;
Plasmids
;
Transfection
10.Expression of TMPRSS3 in the rat cochlea following kanamycin ototoxicity.
Anquan PENG ; Shenglei GE ; Qin WANG ; Dinghua XIE ; Weijing WU ; Zi'an XIAO
Journal of Central South University(Medical Sciences) 2011;36(10):987-991
OBJECTIVE:
To establish the kanamycin-induced deafness model in SD rats, and to investigate the expression and significance of transmembrane protease, serine 3 (TMPRSS3) in the cochlea following kanamycin ototoxicity.
METHODS:
A total of 40 male SD rats were randomly divided into 4 groups. The experimental rats received intramuscular kanamycin sulfate for 3, 7, and 14 consecutive days, and the control group were treated with normal saline for 14 days. Auditory brainstem responses (ABR) were obtained before and after the kanamycin administration. The expression of TMPRSS3 in the cochlea was identified and detected by immunohistochemistry and Western blot.
RESULTS:
Kanamycin-induced deafness model in the SD rats was successfully established. ABR thresholds were increased and the expression of TMPRSS3 in the cochlea was reduced after the kanamycin injection (P<0.01).
CONCLUSION
TMPRSS3 may play an important role in normal cochlea function and involve in the process of aminoglycoside antibiotics induced deafness.
Animals
;
Anti-Bacterial Agents
;
toxicity
;
Cochlea
;
drug effects
;
metabolism
;
Deafness
;
chemically induced
;
metabolism
;
Disease Models, Animal
;
Evoked Potentials, Auditory, Brain Stem
;
physiology
;
Kanamycin
;
toxicity
;
Male
;
Membrane Proteins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Serine Endopeptidases
;
metabolism

Result Analysis
Print
Save
E-mail