1.BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models.
Beibei JIANG ; Tong ZHANG ; Minjuan DENG ; Wei JIN ; Yuan HONG ; Xiaotong CHEN ; Xin CHEN ; Jing WANG ; Hongjia HOU ; Yajuan GAO ; Wenfeng GONG ; Xing WANG ; Haiying LI ; Xiaosui ZHOU ; Yingcai FENG ; Bo ZHANG ; Bin JIANG ; Xueping LU ; Lijie ZHANG ; Yang LI ; Weiwei SONG ; Hanzi SUN ; Zuobai WANG ; Xiaomin SONG ; Zhirong SHEN ; Xuesong LIU ; Kang LI ; Lai WANG ; Ye LIU
Frontiers of Medicine 2023;17(6):1170-1185
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Mice
;
Animals
;
Receptors, Tumor Necrosis Factor/physiology*
;
Receptors, OX40
;
Membrane Glycoproteins
;
Ligands
;
Antibodies, Monoclonal/pharmacology*
;
Antineoplastic Agents/pharmacology*
2.Microarray Analysis of Gene Expression Changes in Neuroplastin 65-Knockout Mice: Implications for Abnormal Cognition and Emotional Disorders.
Huanhuan LI ; Jiujiang ZENG ; Liang HUANG ; Dandan WU ; Lifen LIU ; Yutong LIU ; Qionglan YUAN
Neuroscience Bulletin 2018;34(5):779-788
Neuroplastin 65 (Np65) is an immunoglobulin superfamily cell adhesion molecule involved in synaptic formation and plasticity. Our recent study showed that Np65-knockout (KO) mice exhibit abnormal cognition and emotional disorders. However, the underlying mechanisms remain unclear. In this study, we found 588 differentially-expressed genes in Np65-KO mice by microarray analysis. RT-PCR analysis also revealed the altered expression of genes associated with development and synaptic structure, such as Cdh1, Htr3a, and Kcnj9. In addition, the expression of Wnt-3, a Wnt protein involved in development, was decreased in Np65-KO mice as evidenced by western blotting. Surprisingly, MRI and DAPI staining showed a significant reduction in the lateral ventricular volume of Np65-KO mice. Together, these findings suggest that ablation of Np65 influences gene expression, which may contribute to abnormal brain development. These results provide clues to the mechanisms underlying the altered brain functions of Np65-deficient mice.
Affective Symptoms
;
metabolism
;
Animals
;
Brain
;
diagnostic imaging
;
metabolism
;
pathology
;
Cognition Disorders
;
metabolism
;
Gene Expression
;
Magnetic Resonance Imaging
;
Membrane Glycoproteins
;
deficiency
;
genetics
;
physiology
;
Mice, Knockout
;
Microarray Analysis
;
Organ Size
;
Real-Time Polymerase Chain Reaction
;
Wnt3 Protein
;
metabolism
3.Mutant Huntingtin Causes a Selective Decrease in the Expression of Synaptic Vesicle Protein 2C.
Chaohua PENG ; Gaochun ZHU ; Xiangqian LIU ; He LI
Neuroscience Bulletin 2018;34(5):747-758
Huntington's disease (HD) is a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin (Htt) protein. Mutant Htt causes synaptic transmission dysfunctions by interfering in the expression of synaptic proteins, leading to early HD symptoms. Synaptic vesicle proteins 2 (SV2s), a family of synaptic vesicle proteins including 3 members, SV2A, SV2B, and SV2C, plays important roles in synaptic physiology. Here, we investigated whether the expression of SV2s is affected by mutant Htt in the brains of HD transgenic (TG) mice and Neuro2a mouse neuroblastoma cells (N2a cells) expressing mutant Htt. Western blot analysis showed that the protein levels of SV2A and SV2B were not significantly changed in the brains of HD TG mice expressing mutant Htt with 82 glutamine repeats. However, in the TG mouse brain there was a dramatic decrease in the protein level of SV2C, which has a restricted distribution pattern in regions particularly vulnerable in HD. Immunostaining revealed that the immunoreactivity of SV2C was progressively weakened in the basal ganglia and hippocampus of TG mice. RT-PCR demonstrated that the mRNA level of SV2C progressively declined in the TG mouse brain without detectable changes in the mRNA levels of SV2A and SV2B, indicating that mutant Htt selectively inhibits the transcriptional expression of SV2C. Furthermore, we found that only SV2C expression was progressively inhibited in N2a cells expressing a mutant Htt containing 120 glutamine repeats. These findings suggest that the synaptic dysfunction in HD results from the mutant Htt-mediated inhibition of SV2C transcriptional expression. These data also imply that the restricted distribution and decreased expression of SV2C contribute to the brain region-selective pathology of HD.
Aging
;
metabolism
;
Animals
;
Brain
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Gene Expression
;
physiology
;
Huntingtin Protein
;
genetics
;
metabolism
;
Membrane Glycoproteins
;
metabolism
;
Mice
;
Mice, Transgenic
;
Mutation
;
Nerve Tissue Proteins
;
metabolism
;
RNA, Messenger
;
metabolism
;
Transcription, Genetic
;
physiology
4.Effect of triggering receptor expressed on myeloid cells 2 overexpression on airway inflammation and remodeling in mice with allergic asthma.
Zhen WANG ; Jing WANG ; Wen ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(9):879-884
OBJECTIVETo investigate the effect of triggering receptor expressed on myeloid cells 2 (TREM-2) overexpression on airway inflammation and remodeling in mice with asthma.
METHODSA total of 40 BALB/c mice were randomly divided into normal control, asthma, empty vector, and TREM-2 overexpression groups (n=10 each). Ovalbumin (OVA) sensitization and challenge were performed to establish the model of asthma. The mice in the control group were given normal saline, and those in the empty vector and TREM-2 overexpression groups were transfected with adenovirus vector and TREM-2 adenovirus, respectively. RT-PCR and Western blot were used to measure the expression of TREM-2, MMP-2, MMP-9, ADAM33, and ADAM8. Bronchoalveolar lavage fluid (BALF) was collected to perform cell counting and classification. ELISA was used to measure the total serum level of IgE and the levels of cytokines in BALF.
RESULTSCompared with the control group, the asthma group showed significant reductions in the mRNA and protein expression of TREM-2 (P<0.05), a significantly increased level of Th2 cytokine (P<0.05), and significantly increased numbers of total cells and classified cells. Compared with the asthma group, the TREM-2 overexpression group showed a significantly reduced level of Th2 cytokine (P<0.05), a significantly reduced level of IgE (P<0.05), and significantly reduced numbers of total cells and classified cells (P<0.05), as well as significantly downregulated expression of the inflammatory factors and growth factors MMP-2, MMP-9, TGF-β1, ADAM8, and ADAM33 (P<0.05).
CONCLUSIONSTREM-2 overexpression significantly alleviates airway inflammation and airway remodeling in mice with asthma and may become a potential target for the prevention and treatment of childhood asthma.
Airway Remodeling ; Animals ; Asthma ; etiology ; immunology ; Cytokines ; analysis ; Female ; Membrane Glycoproteins ; genetics ; physiology ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; immunology ; RNA, Messenger ; analysis ; Receptors, Immunologic ; genetics ; physiology
5.Role of triggering receptor expressed on myeloid cells-1 in the pathogenesis of Kawasaki disease.
Chinese Journal of Contemporary Pediatrics 2016;18(6):522-526
OBJECTIVETo study the role of triggering receptor expressed on myeloid cells-1(TREM-1) in the pathogenesis of Kawasaki disease (KD).
METHODSBased on color Doppler examination results, 45 children with KD were classified into two groups: coronary artery lesions (CAL group) and no coronary artery lesions (NCAL group). Fifteen children with fever caused by respiratory infection (fever control group) and fifteen healthy children (normal control group) served as controls. Real-time fluorescence quantitative PCR was used to detect the expression of TREM-1 mRNA and DNAX-activating protein 12 (DAP12) mRNA in peripheral blood mononuclear cells (PBMC). ELISA was used to detect the expression of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), DAP12, monocyte chemoattractant protein-1(MCP-1), interleukin-8 (IL-8) proteins levels.
RESULTSThe mean serum protein concentrations of sTREM-1 and DAP12 and the expression levels of TREM-1 mRNA and DAP12 mRNA in PBMC in 45 children with KD (KD group) were significantly higher than in the two control groups (P<0.05). The levels of sTREM-1 protein and TREM-1 mRNA in the CAL subgroup were significantly higher than in the NCAL subgroup (P<0.05). The serum protein concentrations of MCP-1 and IL-8 in the KD group were significantly higher than in the two control groups (P<0.05). The MCP-1 protein level in the CAL subgroup was significantly higher than in the NCAL subgroup (P<0.05). In children with KD, there was a positive correlation between serum sTREM-1 and MCP-1 levels (r=0.523, P<0.05).
CONCLUSIONSTREM-1 activation may be involved in the development of KD.
Chemokine CCL2 ; blood ; Child ; Child, Preschool ; Female ; Humans ; Infant ; Interleukin-8 ; blood ; Male ; Membrane Glycoproteins ; blood ; genetics ; physiology ; Mucocutaneous Lymph Node Syndrome ; etiology ; immunology ; RNA, Messenger ; analysis ; Receptors, Immunologic ; blood ; genetics ; physiology ; Triggering Receptor Expressed on Myeloid Cells-1
6.Advances in research of SCARB2 functions and related disorders.
Miao HE ; Zhen LIU ; Beisha TANG ; Junling WANG
Chinese Journal of Medical Genetics 2015;32(5):723-727
SCARB2 (scavenger receptor class B, member 2) is a lysosomal membrane glucoprotein, which is encoded by SCARB2 gene. It takes vital parts in the physiological and pathological processes including the transportation of beta-glucocerebrosidase to the lysosome, infection of EV71 and load-induced cardiac myocyte hypertrophy. This article has reviewed the molecular structure and functions of SCARB2 gene and its protein, as well as their relationship with diseases.
Hand, Foot and Mouth Disease
;
genetics
;
Humans
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
physiology
;
Myoclonic Epilepsies, Progressive
;
genetics
;
Parkinson Disease
;
genetics
;
Receptors, Scavenger
;
chemistry
;
genetics
;
physiology
7.Role of TRAIL in the treatment of prostate cancer: An update.
National Journal of Andrology 2015;21(10):941-944
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF super family found in recent years, which widely exists in the body tissues and participates in the immune regulation, immune stability, and immune surveillance of the human body. The TRAIL receptor is expressed in the surface of a variety of cells. Recent studies show that TRAIL induces the apoptosis of tumor cells and has no significant toxic effect on normal cells. Its anti-tumor activity and safety have been widely recognized. The development of prostate cancer is regulated by the mechanisms of cell apoptosis. TRAIL can induce the apoptosis of prostate cancer cells, and therefore has a great application value in the treatment of prostate cancer.
Antineoplastic Agents
;
therapeutic use
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Humans
;
Male
;
Membrane Glycoproteins
;
Prostatic Neoplasms
;
drug therapy
;
pathology
;
Receptors, TNF-Related Apoptosis-Inducing Ligand
;
physiology
;
therapeutic use
;
TNF-Related Apoptosis-Inducing Ligand
;
Tumor Necrosis Factor-alpha
8.Relationship between expression of endothelial nitric oxide synthase and NADPH oxidase in lungs of mice exposed to chronic hypoxia.
Xi-Ling WU ; Li-Zhong DU ; Xue-Feng XU
Chinese Journal of Contemporary Pediatrics 2015;17(9):1001-1006
OBJECTIVETo explore the relationship between the expression of endothelial nitric oxide synthase (eNOS) and NADPH oxidase (NOX) in the lungs of mice treated by chronic hypoxic exposure.
METHODSThirty male wild-type (WT) C57Bl/6 mice and thirty male eNOS-knockout (KO) C57BL/6 mice were randomly divided into normoxic groups (exposed to normoxia for 7 days or 21 days), hypoxic groups (exposed to 10% oxygen for 7 days or 21 days), and treatment groups (exposed to 10% oxygen and orally administrated 10 mmol/L 4-hydroxy TEMPO in drinking water for 7 days or 21 days) (n=6 in each group). The remodeling of the small pulmonary arteries was evaluated by the percentage of media wall thickness (MT%). The weight ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was calculated to evaluate the hypertrophy of right ventricle. Real-time PCR was used to measure the mRNA expression of NOX2, NOX4, and eNOS in mouse lungs. ELISA was used to determine the concentration of reactive oxygen species (ROS) in mouse lungs.
RESULTSIn WT mice and KO mice, the hypoxic groups had significantly increased pulmonary vascular remodeling and RV/[LV+S] compared with the normoxic and treatment groups (P<0.05), but there were no significant differences between the normoxic and treatment groups (P>0.05). In WT mice, the hypoxic and treatment groups had significantly lower ROS concentrations than the normoxic group (P<0.05), but there were no significant differences between the hypoxic and treatment groups (P>0.05). In WT mice, the mRNA expression of eNOS, NOX2, and NOX4 was significantly higher in the hypoxic group than in the normoxic group (P<0.05), and 4-hydroxy TEMPO reversed their over-expression. In the normoxic group, the KO mice had significantly higher NOX2 and NOX4 mRNA expression than the WT mice (P<0.05); in KO mice, the hypoxic group showed no significant changes in NOX4 mRNA expression (P>0.05), but had significantly reduced NOX2 mRNA expression (P<0.05), as compared with the normoxic group; the treatment group had reduced expression of NOX2 mRNA expression and increased NOX4 mRNA expression (P<0.05), as compared with the hypoxic group.
CONCLUSIONSeNOS plays a key role in the regulation of expression of NOX2 and NOX4 in the lungs exposed to hypoxia. It suggests that NOX and eNOS may physically interact with one another in pulmonary vascular remodeling induced by chronic hypoxia.
Animals ; Chronic Disease ; Hypoxia ; enzymology ; Lung ; enzymology ; Male ; Membrane Glycoproteins ; genetics ; physiology ; Mice ; Mice, Inbred C57BL ; NADPH Oxidase 2 ; NADPH Oxidase 4 ; NADPH Oxidases ; genetics ; physiology ; Nitric Oxide Synthase Type III ; genetics ; physiology ; RNA, Messenger ; analysis
9.LRIG1 Enhances Chemosensitivity by Modulating BCL-2 Expression and Receptor Tyrosine Kinase Signaling in Glioma Cells.
Zhentao GUO ; Qianxue CHEN ; Baohui LIU ; Daofeng TIAN ; Shenqi ZHANG ; Mingchang LI
Yonsei Medical Journal 2014;55(5):1196-1205
PURPOSE: Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) are an inhibitor of receptor tyrosine kinases (RTKs) that was discovered in recent years, and many studies showed that LRIG1 is a tumor suppressor gene and may be related to tumor drug resistance. In this study, we explored whether LRIG1 protein expression can improve the chemosensitivity of glioma cells and what was its mechanism. MATERIALS AND METHODS: We collected 93 cases of glioma tissues and detected the expression of LRIG1 and BCL-2. We constructed a multidrug resistance cell line U251/multidrug resistance (MDR) and examined the change of LRIG1 and BCL-2 at mRNA and protein expression levels. LRIG1 expression was upregulated in U251/MDR cells and we detected the change of multidrug resistance. Meanwhile, we changed the expression of LRIG1 and BCL-2 and explored the relationship between LRIG1 and BCL-2. Finally, we also explored the relationship between LRIG1 and RTKs. RESULTS: LRIG1 was negatively correlated with BCL-2 expression in glioma tissue and U251/MDR cells, and upregulation of LRIG1 can enhance chemosensitivity and inhibit BCL-2 expression. Furthermore, LRIG1 was negatively correlated with RTKs in U251/MDR cells. CONCLUSION: These results demonstrated that LRIG1 can improve chemosensitivity by modulating BCL-2 expression and RTK signaling in glioma cells.
Astrocytoma/drug therapy/genetics/metabolism
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics/*physiology
;
Gene Expression Regulation, Neoplastic
;
Gene Knockdown Techniques
;
Glioma/drug therapy/*metabolism
;
Humans
;
Membrane Glycoproteins/metabolism/*physiology
;
Proto-Oncogene Proteins c-bcl-2/*metabolism
;
RNA, Messenger/metabolism
;
Receptor Protein-Tyrosine Kinases/metabolism
10.A pH-dependent molecular switch for virion uncoating.
Protein & Cell 2014;5(9):653-654
Capsid Proteins
;
genetics
;
metabolism
;
Enterovirus A, Human
;
genetics
;
metabolism
;
physiology
;
Enterovirus Infections
;
metabolism
;
virology
;
Host-Pathogen Interactions
;
Humans
;
Hydrogen-Ion Concentration
;
Lysosome-Associated Membrane Glycoproteins
;
metabolism
;
RNA, Viral
;
genetics
;
metabolism
;
Receptors, Scavenger
;
metabolism
;
Virion
;
genetics
;
metabolism
;
Virus Attachment

Result Analysis
Print
Save
E-mail