1.Effect of the chicken zp1 gene on osteoblast mineralization.
Qiaoxian YUE ; Chenxuan HUANG ; Yinliang ZHANG ; Hui CHEN ; Rongyan ZHOU
Chinese Journal of Biotechnology 2023;39(7):2684-2694
		                        		
		                        			
		                        			The aim of this study was to clone the chicken zp1 gene encoding zona pellucida 1 (Zp1) and investigate its tissues expression profile and its effect on osteoblast mineralization. The expression level of zp1 was quantified in various tissues of laying hens and in the tibia of the pre- and post-sexual maturity by RT-qPCR. Zp1 overexpressed vector was transfected into chicken calvarial osteoblasts which were induced differentiation for 8 days, and the extracellular mineral and the expression of mineralization-related genes were detected. The full-length chicken zp1 gene is 3 045 bp, encoding 958 amino acids residuals, and has two N-glycosylation sites. The highest expression level of the zp1 gene was found in the liver, followed by the tibia and yolk membrane, while no expression was detected in the heart and eggshell gland. Compared with the pre-sexual maturity hens, the concentration of estrogen (E2) in plasma, the content of glycosaminoglycan (GAG) and the expression level of the zp1 gene in the tibia with post-sexual maturity were higher. The extracellular matrix and the level of osteoblast mineralization-related genes showed a significantly upregulated expression in chicken calvarial osteoblasts with Zp1 overexpressed and addition of estrogen. The expression of the zp1 gene is tissue-specific and positively regulated osteoblast mineralization under the action of estrogen, laying the foundation for elucidating the functional properties of Zp1 in chicken bones during the egg production period.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Zona Pellucida Glycoproteins
		                        			;
		                        		
		                        			Membrane Glycoproteins/metabolism*
		                        			;
		                        		
		                        			Chickens/genetics*
		                        			;
		                        		
		                        			Egg Proteins/metabolism*
		                        			;
		                        		
		                        			Receptors, Cell Surface
		                        			;
		                        		
		                        			Estrogens
		                        			
		                        		
		                        	
2.LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2023;15(1):24-24
		                        		
		                        			
		                        			Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3β, which in turn facilitates nuclear translocation of β-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Carcinoma, Squamous Cell/pathology*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/metabolism*
		                        			;
		                        		
		                        			Head and Neck Neoplasms/pathology*
		                        			;
		                        		
		                        			Neoplastic Stem Cells/pathology*
		                        			;
		                        		
		                        			Squamous Cell Carcinoma of Head and Neck/pathology*
		                        			;
		                        		
		                        			Lysosome-Associated Membrane Glycoproteins
		                        			
		                        		
		                        	
3.Expression of GPNMB in renal eosinophilic tumors and its value in differential diagnosis.
Ya WANG ; Meng Yue HOU ; Yao FU ; Kui MENG ; Hong Yan WU ; Jin CHEN ; Yue Mei XU ; Jiong SHI ; Xiang Shan FAN
Chinese Journal of Pathology 2023;52(4):358-363
		                        		
		                        			
		                        			Objective: To investigate the expression of glycoprotein non metastatic melanoma protein B (GPNMB) in renal eosinophilic tumors and to compare the value of GPNMB with CK20, CK7 and CD117 in the differential diagnosis of renal eosinophilic tumors. Methods: Traditional renal tumor eosinophil subtypes, including 22 cases of renal clear cell carcinoma eosinophil subtype (e-ccRCC), 19 cases of renal papillary cell carcinoma eosinophil subtype (e-papRCC), 17 cases of renal chromophobe cell carcinoma eosinophil subtype (e-chRCC), 12 cases of renal oncocytoma (RO) and emerging renal tumor types with eosinophil characteristics [3 cases of eosinophilic solid cystic renal cell carcinoma (ESC RCC), 3 cases of renal low-grade eosinophil tumor (LOT), 4 cases of fumarate hydratase-deficient renal cell carcinoma (FH-dRCC) and 5 cases of renal epithelioid angiomyolipoma (E-AML)], were collected at the Affiliated Drum Tower Hospital of Nanjing University Medical School from January 2017 to March 2022. The expression of GPNMB, CK20, CK7 and CD117 was detected by immunohistochemistry and statistically analyzed. Results: GPNMB was expressed in all emerging renal tumor types with eosinophil characteristics (ESC RCC, LOT, FH-dRCC) and E-AML, while the expression rates in traditional renal eosinophil subtypes e-papRCC, e-chRCC, e-ccRCC and RO were very low or zero (1/19, 1/17, 0/22 and 0/12, respectively); the expression rate of CK7 in LOT (3/3), e-chRCC (15/17), e-ccRCC (4/22), e-papRCC (2/19), ESC RCC (0/3), RO (4/12), E-AML(1/5), and FH-dRCC (2/4) variedly; the expression of CK20 was different in ESC RCC (3/3), LOT(3/3), e-chRCC(1/17), RO(9/12), e-papRCC(4/19), FH-dRCC(1/4), e-ccRCC(0/22) and E-AML(0/5), and so did that of CD117 in e-ccRCC(2/22), e-papRCC(1/19), e-chRCC(16/17), RO(10/12), ESC RCC(0/3), LOT(1/3), E-AML(2/5) and FH-dRCC(1/4). GPNMB had 100% sensitivity and 97.1% specificity in distinguishing E-AML and emerging renal tumor types (such as ESC RCC, LOT, FH-dRCC) from traditional renal tumor types (such as e-ccRCC, e-papRCC, e-chRCC, RO),respectively. Compared with CK7, CK20 and CD117 antibodies, GPNMB was more effective in the differential diagnosis (P<0.05). Conclusion: As a new renal tumor marker, GPNMB can effectively distinguish E-AML and emerging renal tumor types with eosinophil characteristics such as ESC RCC, LOT, FH-dRCC from traditional renal tumor eosinophil subtypes such as e-ccRCC, e-papRCC, e-chRCC and RO, which is helpful for the differential diagnosis of renal eosinophilic tumors.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Kidney Neoplasms/pathology*
		                        			;
		                        		
		                        			Carcinoma, Renal Cell/pathology*
		                        			;
		                        		
		                        			Diagnosis, Differential
		                        			;
		                        		
		                        			Angiomyolipoma/diagnosis*
		                        			;
		                        		
		                        			Biomarkers, Tumor/metabolism*
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute/diagnosis*
		                        			;
		                        		
		                        			Membrane Glycoproteins
		                        			
		                        		
		                        	
4.Lysosomal membrane protein Sidt2 knockout induces apoptosis of human hepatocytes in vitro independent of the autophagy-lysosomal pathway.
Jiating XU ; Mengya GENG ; Haijun LIU ; Wenjun PEI ; Jing GU ; Mengxiang QI ; Yao ZHANG ; Kun LÜ ; Yingying SONG ; Miaomiao LIU ; Xin HU ; Cui YU ; Chunling HE ; Lizhuo WANG ; Jialin GAO
Journal of Southern Medical University 2023;43(4):637-643
		                        		
		                        			OBJECTIVE:
		                        			To explore the regulatory mechanism of human hepatocyte apoptosis induced by lysosomal membrane protein Sidt2 knockout.
		                        		
		                        			METHODS:
		                        			The Sidt2 knockout (Sidt2-/-) cell model was constructed in human hepatocyte HL7702 cells using Crispr-Cas9 technology.The protein levels of Sidt2 and key autophagy proteins LC3-II/I and P62 in the cell model were detected using Western blotting, and the formation of autophagosomes was observed with MDC staining.EdU incorporation assay and flow cytometry were performed to observe the effect of Sidt2 knockout on cell proliferation and apoptosis.The effect of chloroquine at the saturating concentration on autophagic flux, proliferation and apoptosis of Sidt2 knockout cells were observed.
		                        		
		                        			RESULTS:
		                        			Sidt2-/- HL7702 cells were successfully constructed.Sidt2 knockout significantly inhibited the proliferation and increased apoptosis of the cells, causing also increased protein expressions of LC3-II/I and P62(P < 0.05) and increased number of autophagosomes.Autophagy of the cells reached a saturated state following treatment with 50 μmol/L chloroquine, and at this concentration, chloroquine significantly increased the expressions of LC3B and P62 in Sidt2-/- HL7702 cells.
		                        		
		                        			CONCLUSION
		                        			Sidt2 gene knockout causes dysregulation of the autophagy pathway and induces apoptosis of HL7702 cells, and the latter effect is not mediated by inhibiting the autophagy-lysosomal pathway.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lysosome-Associated Membrane Glycoproteins/metabolism*
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Hepatocytes
		                        			;
		                        		
		                        			Lysosomes/metabolism*
		                        			;
		                        		
		                        			Chloroquine/pharmacology*
		                        			;
		                        		
		                        			Nucleotide Transport Proteins/metabolism*
		                        			
		                        		
		                        	
5.Glycosylphosphatidylinositol biosynthesis deficiency 15 caused by GPAA1 gene mutation: a rare disease study.
Qiu-Rong CHEN ; Zhen-Jie ZHANG ; Yi-Xiu LU ; Sun-Bi-Xin YUAN ; Ji LI
Chinese Journal of Contemporary Pediatrics 2023;25(12):1276-1281
		                        		
		                        			
		                        			A boy, aged 6 years, attended the hospital due to global developmental delay for 6 years and recurrent fever and convulsions for 5 years. The boy was found to have delayed mental and motor development at the age of 3 months and experienced recurrent fever and convulsions since the age of 1 year, with intermittent canker sores and purulent tonsillitis. During the fever period, blood tests showed elevated white blood cell count, C-reactive protein, and erythrocyte sedimentation rate, which returned to normal after the fever subsides. Electroencephalography showed epilepsy, and genetic testing showed compound heterozygous mutations in the GPAA1 gene. The boy was finally diagnosed with glycosylphosphatidylinositol biosynthesis deficiency 15 (GPIBD15) and periodic fever. The patient did not respond well to antiepileptic treatment, but showed successful fever control with glucocorticoid therapy. This article reports the first case of GPIBD15 caused by GPAA1 gene mutation in China and summarizes the genetic features, clinical features, diagnosis, and treatment of this disease, which provides a reference for the early diagnosis and treatment of GPIBD15.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Fever
		                        			;
		                        		
		                        			Glycosylphosphatidylinositols/genetics*
		                        			;
		                        		
		                        			Membrane Glycoproteins/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Rare Diseases
		                        			;
		                        		
		                        			Seizures
		                        			;
		                        		
		                        			Child
		                        			
		                        		
		                        	
6.BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models.
Beibei JIANG ; Tong ZHANG ; Minjuan DENG ; Wei JIN ; Yuan HONG ; Xiaotong CHEN ; Xin CHEN ; Jing WANG ; Hongjia HOU ; Yajuan GAO ; Wenfeng GONG ; Xing WANG ; Haiying LI ; Xiaosui ZHOU ; Yingcai FENG ; Bo ZHANG ; Bin JIANG ; Xueping LU ; Lijie ZHANG ; Yang LI ; Weiwei SONG ; Hanzi SUN ; Zuobai WANG ; Xiaomin SONG ; Zhirong SHEN ; Xuesong LIU ; Kang LI ; Lai WANG ; Ye LIU
Frontiers of Medicine 2023;17(6):1170-1185
		                        		
		                        			
		                        			OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Receptors, Tumor Necrosis Factor/physiology*
		                        			;
		                        		
		                        			Receptors, OX40
		                        			;
		                        		
		                        			Membrane Glycoproteins
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Antibodies, Monoclonal/pharmacology*
		                        			;
		                        		
		                        			Antineoplastic Agents/pharmacology*
		                        			
		                        		
		                        	
8.Application of Linear Regression Model of Gpnmb Gene in Rat Injury Time Estimation.
Yan-Ru XI ; Yuan-Xin LIU ; Na FENG ; Zhen GU ; Jun-Hong SUN ; Jie CAO ; Qian-Qian JIN ; Qiu-Xiang DU
Journal of Forensic Medicine 2022;38(4):468-472
		                        		
		                        			OBJECTIVES:
		                        			To investigate the effects of injury time, postmortem interval (PMI) and postmortem storage temperature on mRNA expression of glycoprotein non-metastatic melanoma protein B (Gpnmb), and to establish a linear regression model between Gpnmb mRNA expression and injury time, to provide aimed at providing potential indexes for injury time estimation.
		                        		
		                        			METHODS:
		                        			Test group SD rats were anesthetized and subjected to blunt contusion and randomly divided into 0 h, 4 h, 8 h, 12 h, 16 h, 20 h and 24 h groups after injury, with 18 rats in each group. After cervical dislocation, 6 rats in each group were collected and stored at 0 ℃, 16 ℃ and 26 ℃, respectively. The muscle tissue samples of quadriceps femoris injury were collected at 0 h, 12 h and 24 h postmortem at the same temperature. The grouping method and treatment method of the rats in the validation group were the same as above. The expression of Gpnmb mRNA in rat skeletal muscle was detected by RT-qPCR. The Pearson correlation coefficient was used to evaluate the correlation between Gpnmb mRNA expression and injury time, PMI, and postmortem storage temperature. SPSS 25.0 software was used to construct a linear regression model, and the validation group data was used for the back-substitution test.
		                        		
		                        			RESULTS:
		                        			The expression of Gpnmb mRNA continued to increase with the prolongation of injury time, and the expression level was highly correlated with injury time (P<0.05), but had little correlation with PMI and postmortem storage temperature (P>0.05). The linear regression equation between injury time (y) and Gpnmb mRNA relative expression (x) was y=0.611 x+4.489. The back-substitution test proved that the prediction of the model was accurate.
		                        		
		                        			CONCLUSIONS
		                        			The expression of Gpnmb mRNA is almost not affected by the PMI and postmortem storage temperature, but is mainly related to the time of injury. Therefore, a linear regression model can be established to infer the time of injury.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Glycoproteins
		                        			;
		                        		
		                        			Linear Models
		                        			;
		                        		
		                        			Melanoma
		                        			;
		                        		
		                        			Membrane Glycoproteins/genetics*
		                        			;
		                        		
		                        			Postmortem Changes
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Time Factors
		                        			
		                        		
		                        	
9.Analysis of Differential Proteins Related to Platelet Activation in Patients with Essential Thrombocythemia Based on Label-Free Quantitative Technology.
Yu-Jin LI ; Ju-Ning MA ; Zi-Qin WANG ; Er-Peng YANG ; Ming-Jing WANG ; Jing MING ; De-Hao WANG ; Ji-Cong NIU ; Wei-Yi LIU ; Xiao-Mei HU
Journal of Experimental Hematology 2022;30(3):836-843
		                        		
		                        			OBJECTIVE:
		                        			To analysis the specific protein markers of essential thrombocythemia (ET) based on proteomics technology, to explore and verify the differential protein related to platelet activation.
		                        		
		                        			METHODS:
		                        			Blood samples were obtained from ET patients and healthy people and a certain protein mass spectrometry was detected using label-free quantitative technology. The proteins relative abundance increased or down-regulated by 1.3 times in the disease group compared with the control group, and the protein abundance in the two groups t test P<0.05 were defined as differential proteins. Bioinformatics analysis of the differential proteins was performed using GO and KEGG. The difference in the average protein abundance between the two groups was analyzed by t test and P<0.05 was considered statistically significant. Differential proteins were selected for verification by parallel reaction monitoring (PRM) technology.
		                        		
		                        			RESULTS:
		                        			A total of 140 differential proteins were found, of which 72 were up-regulated and 68 were down-regulated. KEGG enrichment showed that the differential protein expression was related to the platelet activation pathway. The differential proteins related to platelet activation were GPV, COL1A2, GP1bα, COL1A1 and GPVI. Among them, the expressions of GPV, GP1bα and GPVI were up-regulated, and the expressions of COL1A2 and COL1A1 were down-regulated. PRM verification of COL1A1, GP1bα, GPVI and GPV was consistent with LFP proteomics testing.
		                        		
		                        			CONCLUSION
		                        			Differential proteins in ET patients are related to platelet activation pathway activation.Differential proteins such as GPV, GPVI, COL1A1 and GP1bα can be used as new targets related to ET platelet activation.
		                        		
		                        		
		                        		
		                        			Blood Platelets/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Platelet Activation
		                        			;
		                        		
		                        			Platelet Membrane Glycoproteins/metabolism*
		                        			;
		                        		
		                        			Technology
		                        			;
		                        		
		                        			Thrombocythemia, Essential
		                        			
		                        		
		                        	
10.Amyloidosis cutis dyschromica due to homozygous variants of the GPNMB gene in a Chinese pedigree.
Chinese Journal of Medical Genetics 2021;38(2):123-126
		                        		
		                        			OBJECTIVE:
		                        			To explore the genetic basis for a Chinese pedigree affected with amyloidosis cutis dyschromica.
		                        		
		                        			METHODS:
		                        			High-throughput sequencing was carried out for the proband. Bioinformatic analysis was used to identify the pathogenic variants. The result was verified by Sanger sequencing.
		                        		
		                        			RESULTS:
		                        			A homozygous nonsense variant c.565C>T (p.Arg189X) of the GPNMB gene was identified in the proband, his elder brother and younger sister, which resulted a truncated protein with loss of function. The father of the proband was a heterozygous carrier for the variant. The genotype of his mother was unknown since she had passed away. Based on the American College of Medical Genetics and Genomics standards and guidelines, the c.565C>T variant was predicted to be likely pathogenic (PS3+ PM2+ PP1+PP3).
		                        		
		                        			CONCLUSION
		                        			The novel homozygous GPNMB variant probably underlay the amyloidosis cutis dyschromica in this pedigree. Above finding has expanded the spectrum of GPNMB gene variants.
		                        		
		                        		
		                        		
		                        			Amyloidosis, Familial/genetics*
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Homozygote
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Membrane Glycoproteins/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Pedigree
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail