1.Preparation of HSV-IgM human-mouse chimeric antibody and development of stable recombinant cell line.
Yamin CUI ; Xiaoping TIAN ; Jingjing SUN ; Zhiqiang WANG ; Qiaohui ZHAO ; Guilin LI
Chinese Journal of Biotechnology 2023;39(9):3887-3898
In order to achieve large-scale production of HSV-IgM (HSV1, HSV2) human-mouse chimeric antibody in vitro, the gene sequence of the corresponding hybridoma cell was harvested by RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) technique to clone the chimeric antibody into eukaryotic expression vectors, and express the target proteins in CHO-S cells. At the same time, the screening process of stable cell lines was optimized, and the pressure conditions of pool construction stage and monoclonal screening stage were explored. Finally, the target protein was purified by protein L affinity purification method and the biological activity was detected. The recombinant IgM antibodies, HSV1 and HSV2, weighted at 899 kDa and 909 kDa respectively, were prepared. The optimal screening pressure was 20P200M (the first phase of pressure) and 50P1000M (the second phase of pressure). The final titer for the monoclonal expression of HSV1-IgM and HSV2-IgM was 1 620 mg/L and 623 mg/L, respectively. This study may facilitate the development of quality control products of HSV1 and HSV2 IgM series recombinant antibodies as well as efficient expression of IgM subtype antibodies in vitro.
Cricetinae
;
Humans
;
Animals
;
Mice
;
Immunoglobulin M/genetics*
;
Antibodies, Viral
;
CHO Cells
;
Cricetulus
;
Hybridomas
;
Recombinant Fusion Proteins
2.A Chinese Herb Prescription "Fang-gan Decoction" Protects Against Damage to Lung and Colon Epithelial Cells Caused by the SARS-CoV-2 Spike Protein by Regulating the TGF-β/Smad2/3 and NF-κB Pathways.
Chao HUANG ; Hao-Sheng LIU ; Bing-Jun LIANG ; Sheng-Rong LIAO ; Wei-Zeng SHEN
Chinese Medical Sciences Journal 2023;38(3):206-217
Objective To explore the effects and mechanisms of a traditional Chinese medicine (TCM) prescription, "Fang-gan Decoction" (FGD), in protecting against SARS-CoV-2 spike protein-induced lung and intestinal injuries in vitro and in vivo.Methods Female BALB/c mice and three cell lines pretreated with FGD were stimulated with recombinant SARS-CoV-2 spike protein (spike protein). Hematoxylin-eosin (HE) staining and pathologic scoring of tissues, cell permeability and viability, and angiotensin-converting enzyme 2 (ACE2) expression in the lung and colon were detected. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of inflammatory factors in serum and cell supernatant. The expression of NF-κB p65, p-NF-κB p65, p-IκBα, p-Smad2/3, TGF-β1, Caspase3, and Bcl-2 was evaluated by Western blotting.Results FGD protected against the damage to the lung and colon caused by the spike protein in vivo and in vitro according to the pathologic score and cell permeability and viability (P<0.05). FGD up-regulated ACE2 expression, which was reduced by the spike protein in the lung and colon, significantly improved the deregulation of inflammatory markers caused by the spike protein, and regulated the activity of TGF-β/Smads and NF-κB signaling.Conclusion Traditional Chinese medicine has a protective effect on lung and intestinal tissue injury stimulated by the spike protein through possible regulatory functions of the NF-κB and TGF-β1/Smad pathways with tissue type specificity.
Mice
;
Animals
;
Female
;
Humans
;
NF-kappa B/metabolism*
;
Spike Glycoprotein, Coronavirus/pharmacology*
;
Transforming Growth Factor beta1/metabolism*
;
Angiotensin-Converting Enzyme 2/pharmacology*
;
COVID-19
;
SARS-CoV-2/metabolism*
;
Lung
;
Antineoplastic Agents
;
Transforming Growth Factor beta/pharmacology*
;
Epithelial Cells/metabolism*
;
Colon
3.Highly Sensitive Poly-N-isopropylacrylamide Microgel-based Electrochemical Biosensor for the Detection of SARS-COV-2 Spike Protein.
Hao CHEN ; Zhi Yuan HOU ; Die CHEN ; Ting LI ; Yi Ming WANG ; Marcelo Andrade DE LIMA ; Ying YANG ; Zhen Zhong GUO
Biomedical and Environmental Sciences 2023;36(3):269-278
OBJECTIVE:
Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019 (COVID-19), a new, highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consequently, considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2.
METHODS:
In this study, a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein (S protein) in human saliva. The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid, and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication. The electrochemical performance of the sensor was evaluated through differential pulse voltammetry.
RESULTS:
Under optimal experimental conditions, the linear range of the sensor was 10 -13-10 -9 mg/mL, whereas the detection limit was 9.55 fg/mL. Furthermore, the S protein was instilled in artificial saliva as the infected human saliva model, and the sensing platform showed satisfactory detection capability.
CONCLUSION
The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein, indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
Humans
;
Microgels
;
Spike Glycoprotein, Coronavirus
;
COVID-19/diagnosis*
;
Gold
;
Metal Nanoparticles
;
SARS-CoV-2
4.Seasonal coronaviruses and SARS-CoV-2: effects of preexisting immunity during the COVID-19 pandemic.
Gang WANG ; Ze XIANG ; Wei WANG ; Zhi CHEN
Journal of Zhejiang University. Science. B 2022;23(6):451-460
Although the coronavirus disease 2019 (COVID-19) epidemic is still ongoing, vaccination rates are rising slowly and related treatments and drugs are being developed. At the same time, there is increasing evidence of preexisting immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans, mainly consisting of preexisting antibodies and immune cells (including T cells and B cells). The presence of these antibodies is mainly due to the seasonal prevalence of four common coronavirus types, especially OC43 and HKU1. The accumulated relevant evidence has suggested that the target of antibodies is mainly the S2 subunit of S protein, followed by evolutionary conservative regions such as the nucleocapsid (N) protein. Additionally, preexisting memory T and B cells are also present in the population. Preexisting antibodies can help the body protect against SARS-CoV-2 infection, reduce the severity of COVID-19, and rapidly increase the immune response post-infection. These multiple effects can directly affect disease progression and even the likelihood of death in certain individuals. Besides the positive effects, preexisting immunity may also have negative consequences, such as antibody-dependent enhancement (ADE) and original antigenic sin (OAS), the prevalence of which needs to be further established. In the future, more research should be focused on evaluating the role of preexisting immunity in COVID-19 outcomes, adopting appropriate policies and strategies for fighting the pandemic, and vaccine development that considers preexisting immunity.
COVID-19
;
Humans
;
Pandemics
;
SARS-CoV-2
;
Seasons
;
Spike Glycoprotein, Coronavirus
5.Bioactive compounds of Jingfang Granules against SARS-CoV-2 virus proteases 3CLpro and PLpro.
Zhan Peng SHANG ; Yang YI ; Rong YU ; Jing Jing FAN ; Yi Xi HUANG ; Xue QIAO ; Min YE
Journal of Peking University(Health Sciences) 2022;54(5):907-919
OBJECTIVE:
Jingfang Granules have been recommended for the prevention and treatment of corona virus disease 2019 (COVID-19). Through chemical analysis and bioactivity evaluation, this study aims to elucidate the potential effective components of Jingfang Granules.
METHODS:
The inhibitory acti-vities of Jingfang Granules extract against 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro), spike protein receptor-binding domain (S-RBD) and human cyclooxygenase-2 (COX-2) were evaluated using enzyme assay. The antitussive effects were evaluated using the classical ammonia-induced cough model. The chemical constituents of Jingfang Granules were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC/MS). The 3CLpro and PLpro inhibitory activities of the major compounds were determined by enzyme assay, molecular docking, and site-directed mutagenesis.
RESULTS:
Jingfang Granules exhibited 3CLpro and PLpro inhibitory activities, as well as COX-2 inhibitory and antitussive activities. By investigating the MS/MS behaviors of reference standards, a total of fifty-six compounds were characterized in Jingfang Granules. Sixteen of them were unambiguously identified by comparing with reference standards. The contents of the 16 major compounds were also determined, and their total contents were 2 498.8 μg/g. Naringin, nodakenin and neohesperidin were three dominating compounds in Jingfang Granules, and their contents were 688.8, 596.4 and 578.7 μg/g, respectively. In addition, neohesperidin and naringin exhibited PLpro inhibitory activities, and the inhibition rates at 8 μmol/L were 53.5% and 46.1%, respectively. Prim-O-glucosylcimifugin showed significant inhibitory activities against 3CLpro and PLpro, and the inhibitory rates at 8 μmol/L were 76.8% and 78.2%, respectively. Molecular docking indicated that hydrogen bonds could be formed between prim-O-glucosylcimifugin and amino acid residues H163, E166, Q192, T190 of 3CLpro (binding energy, -7.7 kcal/mol) and K157, D164, R166, E167, T301 of PLpro(-7.3 kcal/mol), respectively. Site-directed mutagenesis indicated amino acid residue K157 was a key active site for the interaction between prim-O-glucosylcimifugin and PLpro.
CONCLUSION
Prim-O-glucosylcimifugin, neohesperidin, and naringin as the major compounds from Jingfang Granules could inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus proteases 3CLpro and PLpro. The results are valuable for rational clinical use of Jingfang Granules.
Amino Acids
;
Ammonia
;
Antitussive Agents
;
COVID-19
;
Chymases
;
Coronavirus 3C Proteases
;
Cyclooxygenase 2
;
Cyclooxygenase 2 Inhibitors
;
Cysteine Endopeptidases/metabolism*
;
Humans
;
Molecular Docking Simulation
;
Papain
;
Peptide Hydrolases
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus
;
Tandem Mass Spectrometry
6.Glycosylation, glycan receptors recognition of SARS-CoV-2 and discoveries of glycan inhibitors against SARS-CoV-2.
Weiyan YU ; Yueqiang XU ; Jianjun LI ; Zhimin LI ; Qi WANG ; Yuguang DU
Chinese Journal of Biotechnology 2022;38(9):3157-3172
COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.
Antibodies, Neutralizing
;
Glycosylation
;
Heparin
;
Heparitin Sulfate
;
Humans
;
Polysaccharides/chemistry*
;
Receptors, Mitogen/metabolism*
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus/metabolism*
;
COVID-19 Drug Treatment
7.SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies: a review.
Yulei CHEN ; Jinjin LIN ; Peiyi ZHENG ; Minjie CAO ; Tengchuan JIN
Chinese Journal of Biotechnology 2022;38(9):3173-3193
Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.
Angiotensin-Converting Enzyme 2
;
Antibodies, Monoclonal
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Humans
;
Peptidyl-Dipeptidase A/metabolism*
;
Protein Binding
;
SARS-CoV-2
;
Single-Domain Antibodies
;
Spike Glycoprotein, Coronavirus/metabolism*
8.Preparation and immungenicity of recombinant protein containing intramolecular adjuvant in SARS-CoV-2 RBD domain.
Jingwen JIANG ; Yunlong WANG ; Yulin LI ; Jichuang WANG ; Yiqing ZHANG ; Xudong WANG ; Xiaojun WANG ; Heng ZHANG
Chinese Journal of Biotechnology 2022;38(9):3353-3362
A fusion protein containing a tetanus toxin peptide, a tuftsin peptide and a SARS-CoV-2S protein receptor-binding domain (RBD) was prepared to investigate the effect of intramolecular adjuvant on humoral and cellular immunity of RBD protein. The tetanus toxin peptide, tuftsin peptide and S protein RBD region were connected by a flexible polypeptide, and a recombinant vector was constructed after codon optimization. The recombinant S-TT-tuftsin protein was prepared by prokaryotic expression and purification. BALB/c mice were immunized after mixed with aluminum adjuvant, and the humoral and cellular immune effects were evaluated. The recombinant S-TT-tuftsin protein was expressed as an inclusion body, and was purified by ion exchange chromatography and renaturated by gradient dialysis. The renaturated protein was identified by Dot blotting and reacted with serum of descendants immunized with SARS-CoV-2 subunit vaccine. The results showed that the antibody level reached a plateau after 35 days of immunization, and the serum antibody ELISA titer of mice immunized with recombinant protein containing intramolecular adjuvant was up to 1:66 240, which was significantly higher than that of mice immunized with S-RBD protein (P < 0.05). At the same time, the recombinant protein containing intramolecular adjuvant stimulated mice to produce a stronger lymphocyte proliferation ability. The stimulation index was 4.71±0.15, which was significantly different from that of the S-RBD protein (1.83±0.09) (P < 0.000 1). Intramolecular adjuvant tetanus toxin peptide and tuftsin peptide significantly enhanced the humoral and cellular immune effect of the SARS-CoV-2 S protein RBD domain, which provideda theoretical basis for the development of subunit vaccines for SARS-CoV-2 and other viruses.
Adjuvants, Immunologic
;
Aluminum
;
Animals
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19/prevention & control*
;
COVID-19 Vaccines/genetics*
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins/genetics*
;
SARS-CoV-2/genetics*
;
Spike Glycoprotein, Coronavirus/genetics*
;
Tetanus Toxin
;
Tuftsin
;
Vaccines, Subunit
;
Viral Vaccines
9.Progress on the development of the SARS-CoV-2 vaccine and antibody drugs.
Journal of Biomedical Engineering 2022;39(5):1059-1064
The raging global epidemic of coronavirus disease 2019 (COVID-19) not only poses a major threat to public health, but also has a huge impact on the global health care system and social and economic development. Therefore, accelerating the development of vaccines and antibody drugs to provide people with effective protection and treatment measures has become the top priority of researchers and medical institutions in the field. At present, several vaccines and antibody drugs targeting SARS-Cov-2 have been in the stage of clinical research or approved for marketing around the world. In this manuscript, we summarized the vaccines and antibody drugs which apply genetic engineering technologies to target spike protein, including subunit vaccines, viral vector vaccines, DNA vaccines, mRNA vaccines, and several neutralizing antibody drugs, and discussed the trends of vaccines and antibody drugs in the future.
Humans
;
COVID-19 Vaccines
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus
;
COVID-19/prevention & control*
;
Antibodies, Viral
;
Viral Vaccines/therapeutic use*
;
Antibodies, Neutralizing
10.An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope.
Zezhong LIU ; Wei XU ; Zhenguo CHEN ; Wangjun FU ; Wuqiang ZHAN ; Yidan GAO ; Jie ZHOU ; Yunjiao ZHOU ; Jianbo WU ; Qian WANG ; Xiang ZHANG ; Aihua HAO ; Wei WU ; Qianqian ZHANG ; Yaming LI ; Kaiyue FAN ; Ruihong CHEN ; Qiaochu JIANG ; Christian T MAYER ; Till SCHOOFS ; Youhua XIE ; Shibo JIANG ; Yumei WEN ; Zhenghong YUAN ; Kang WANG ; Lu LU ; Lei SUN ; Qiao WANG
Protein & Cell 2022;13(9):655-675
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.
Angiotensin-Converting Enzyme 2
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Epitopes
;
Humans
;
SARS-CoV-2/genetics*
;
Spike Glycoprotein, Coronavirus/genetics*

Result Analysis
Print
Save
E-mail