1.Exercise-induced Mitohormesis in Counteracting Age-related Sarcopenia
Zi-Yi ZHANG ; Mei MA ; Hai BO ; Tao LIU ; Yong ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1349-1361
		                        		
		                        			
		                        			Sarcopenia, an age-related degenerative skeletal muscle disorder characterized by progressive loss of muscle mass, diminished strength, and impaired physical function, poses substantial challenges to global healthy aging initiatives. The pathogenesis of this condition is fundamentally rooted in mitochondrial dysfunction, manifested through defective energy metabolism, disrupted redox equilibrium, imbalanced dynamics, and compromised organelle quality control. This comprehensive review elucidates the central role of exercise-induced mitochondrial hormesis as a critical adaptive mechanism counteracting sarcopenia. Mitohormesis represents an evolutionarily conserved stress response wherein sublethal mitochondrial perturbations, particularly transient low-dose reactive oxygen species (ROS) generated during muscle contraction, activate cytoprotective signaling cascades rather than inflicting macromolecular damage. The mechanistic foundation of this process involves ROS functioning as essential signaling molecules that activate the Keap1 nuclear factor erythroid 2 related factor 2 (Nrf2) antioxidant response element pathway. This activation drives transcriptional upregulation of phase II detoxifying enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPx), thereby enhancing cellular redox buffering capacity. Crucially, Nrf2 engages in bidirectional molecular crosstalk with peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α), the principal regulator orchestrating mitochondrial biogenesis through coordinated induction of nuclear respiratory factors 1 and 2 (NRF1/2) along with mitochondrial transcription factor A (Tfam), collectively facilitating mitochondrial DNA replication and respiratory complex assembly. Concurrently, exercise-induced alterations in cellular energy status, specifically diminished ATP to AMP ratios, potently activate AMP activated protein kinase (AMPK). This energy-sensing kinase phosphorylates PGC-1α while concomitantly stimulating NAD dependent deacetylase sirtuin 1 (SIRT1) activity, which further potentiates PGC-1α function through post-translational deacetylation. The integrated AMPK/PGC-1α/SIRT1 axis coordinates mitochondrial biogenesis, optimizes network architecture through regulation of fusion proteins mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA1), and enhances clearance of damaged organelles via selective activation of mitophagy receptors BCL2 interacting protein 3 (Bnip1) and FUN14 domain containing 1 (FNDC1). Exercise further stimulates the mitochondrial unfolded protein response (UPRmt), increasing molecular chaperones such as heat shock protein 60 (HSP60) and HSP10 to preserve proteostasis. Within the mitochondrial matrix, SIRT3 fine-tunes metabolic flux through deacetylation of electron transport chain components, improving phosphorylation efficiency while attenuating pathological ROS emission. Distinct exercise modalities differentially engage these pathways. Aerobic endurance training primarily activates AMPK/PGC-1α signaling and UPRmt to expand mitochondrial volume and oxidative capacity. Resistance training exploits mechanical tension to acutely stimulate mechanistic target of rapamycin complex 1 (mTORC1) mediated protein synthesis while modulating dynamin related protein 1 (Drp1) phosphorylation dynamics to support mitochondrial network reorganization. High intensity interval training generates potent metabolic oscillations that rapidly amplify AMPK/PGC-1α and Nrf2 activation, demonstrating particular efficacy in insulin-resistant phenotypes. Strategically designed concurrent training regimens synergistically integrate these adaptations. Mitochondrial-nuclear communication through tricarboxylic acid cycle metabolites and mitochondrially derived peptides such as mitochondrial open reading frame of 12s rRNA-c (MOTS-c) coordinates systemic metabolic reprogramming, with exercise-responsive myokines including fibroblast growth factor 21 (FGF-21) mediating inter-tissue signaling to reduce inflammation and enhance insulin sensitivity. This integrated framework provides the scientific foundation for precision exercise interventions targeting mitochondrial pathophysiology in sarcopenia, incorporating biomarker monitoring and exploring pharmacological potentiators including nicotinamide riboside and MOTS-c mimetics. Future investigations should delineate temporal dynamics of mitohormesis signaling and epigenetic regulation to optimize therapeutic approaches for age-related muscle decline. 
		                        		
		                        		
		                        		
		                        	
2. Lycium barbarian seed oil activates Nrf2/ARE pathway to reduce oxidative damage in testis of subacute aging rats
Rui-Ying TIAN ; Wen-Xin MA ; Zi-Yu LIU ; Hui-Ming MA ; Sha-Sha XING ; Na HU ; Chang LIU ; Biao MA ; Jia-Yang LI ; Hu-Jun LIU ; Chang-Cai BAI ; Dong-Mei CHEN
Chinese Pharmacological Bulletin 2024;40(3):490-498
		                        		
		                        			
		                        			 Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway. 
		                        		
		                        		
		                        		
		                        	
3.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
		                        		
		                        			
		                        			 This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury. 
		                        		
		                        		
		                        		
		                        	
4.Assessment of respiratory protection competency of staff in healthcare facilities
Hui-Xue JIA ; Xi YAO ; Mei-Hua HU ; Bing-Li ZHANG ; Xin-Ying SUN ; Zi-Han LI ; Ming-Zhuo DENG ; Lian-He LU ; Jie LI ; Li-Hong SONG ; Jian-Yu LU ; Xue-Mei SONG ; Hang GAO ; Liu-Yi LI
Chinese Journal of Infection Control 2024;23(1):25-31
		                        		
		                        			
		                        			Objective To understand the respiratory protection competency of staff in hospitals.Methods Staff from six hospitals of different levels and characteristics in Beijing were selected,including doctors,nurses,medical technicians,and servicers,to conduct knowledge assessment on respiratory protection competency.According to exposure risks of respiratory infectious diseases,based on actual cases and daily work scenarios,content of respira-tory protection competency assessment was designed from three aspects:identification of respiratory infectious di-seases,transmission routes and corresponding protection requirements,as well as correct selection and use of masks.The assessment included 6,6,and 8 knowledge points respectively,with 20 knowledge points in total,all of which were choice questions.For multiple-choice questions,full marks,partial marks,and no mark were given respective-ly if all options were correct,partial options were correct and without incorrect options,and partial options were correct but with incorrect options.Difficulty and discrimination analyses on question of each knowledge point was conducted based on classical test theory.Results The respiratory protection competency knowledge assessment for 326 staff members at different risk levels in 6 hospitals showed that concerning the 20 knowledge points,more than 60%participants got full marks for 6 points,while the proportion of full marks for other questions was relatively low.Less than 10%participants got full marks for the following 5 knowledge points:types of airborne diseases,types of droplet-borne diseases,conventional measures for the prevention and control of healthcare-associated infec-tion with respiratory infectious diseases,indications for wearing respirators,and indications for wearing medical protective masks.Among the 20 knowledge questions,5,1,and 14 questions were relatively easy,medium,and difficult,respectively;6,1,4,and 9 questions were with discrimination levels of ≥0.4,0.30-0.39,0.20-0.29,and ≤0.19,respectively.Conclusion There is still much room for hospital staff to improve their respiratory protection competency,especially in the recognition of diseases with different transmission routes and the indications for wearing different types of masks.
		                        		
		                        		
		                        		
		                        	
5.Research progress on the mechanism of circular RNA involved in platinum resistance in ovarian cancer
Bin-Xin LIU ; Ya-Dan FAN ; Chun-Yan LYU ; Zi-Man MEI ; Qing-Chun DENG
Journal of Regional Anatomy and Operative Surgery 2024;33(2):179-182
		                        		
		                        			
		                        			Ovarian cancer has become the most lethal gynecological tumor due to the difficulty in early diagnosis,the late stage when diagnosed and the high recurrence rate.Resistance to platinum-based anti-tumor chemotherapy drugs is an important reason for the poor prognosis of ovarian cancer.circular RNA(circRNA)is more stable than mRNA in cells due to its special structure,and it is involved in the regulation of the occurrence,development and chemotherapy resistance of a variety of tumors.circRNA can be used as a competing endogenous RNA(ceRNA)of miRNA to bind to proteins,and regulates the phenotypic polarization of macrophages,it can also be used as an exosomal circRNA to regulate the sensitivity of platinum resistance in ovarian cancer.circRNA is expected to be a new marker of platinum resistance and a new target for the treatment of platinum resistance.In order to further explore the relationship between circRNA and platinum resistance in ovarian cancer,this article summarizes the recent literature related to circRNA and platinum resistance in ovarian cancer.
		                        		
		                        		
		                        		
		                        	
		                				6.A new strategy for quality evaluation of Panax notoginseng  based on the correlation between macroscopic characteristics and chemical profiling
		                			
		                			Zi-ying WANG ; Wen-xiang FAN ; Long-chan LIU ; Mei-long LU ; Li-hua GU ; Lin-nan LI ; Li YANG ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(8):2326-2336
		                        		
		                        			
		                        			 The traditional commodity specifications of Chinese medicinal materials are mainly divided into different grades based on macroscopic characteristics. As the basis for high quality and good price, there is still a lack of systematic evaluation on whether they are consistent with the current standards and whether they can reflect the internal quality of medicinal material. 
		                        		
		                        	
		                				7.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba 
		                			
		                			Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
		                        		
		                        			
		                        			 In order to study the compounds from
		                        		
		                        	
8.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
		                        		
		                        			
		                        			 Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development. 
		                        		
		                        		
		                        		
		                        	
9.Clinicopathological Features and Long-Term Prognostic Role of Human Epidermal Growth Factor Receptor-2 Low Expression in Chinese Patients with Early Breast Cancer:A Single-Institution Study
Qing Zi KONG ; Qun Li LIU ; Qin De HUANG ; Tong Yu WANG ; Jie Jing LI ; Zheng ZHANG ; Xi Xi WANG ; Ling Chuan LIU ; Di Ya ZHANG ; Kang Jia SHAO ; Min Yi ZHU ; Meng Yi CHEN ; Mei LIU ; Hong Wei ZHAO
Biomedical and Environmental Sciences 2024;37(5):457-470
		                        		
		                        			
		                        			Objective This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2(HER2)-low early breast cancer(BC)and HER2-IHC0 BC. Methods Patients diagnosed with HER2-negative BC(N=999)at our institution between January 2011 and December 2015 formed our study population.Clinicopathological characteristics,association between estrogen receptor(ER)expression and HER2-low,and evolution of HER2 immunohistochemical(IHC)score were assessed.Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes(5-year follow-up)between the HER2-IHC0 and HER2-low groups. Results HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor(PgR)positivity than HER2-IHC0 BC group(P<0.001).The rate of HER2-low status increased with increasing ER expression levels(Mantel-Haenszel χ2 test,P<0.001,Pearson's R=0.159,P<0.001).Survival analysis revealed a significantly longer overall survival(OS)in HER2-low BC group than in HER2-IHC0 group(P=0.007)in the whole cohort and the hormone receptor(HR)-negative group.There were no significant differences between the two groups in terms of disease-free survival(DFS).The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.
		                        		
		                        		
		                        		
		                        	
10.Study on the Main Active Components and Network Pharmacological Mechanism of Bushen Huoxue Decoction in Promoting Osteoporotic Fracture Healing
Sheng-Hai LIU ; Zi-He WANG ; Meng-Wei WANG ; Bin WANG ; Ya-Mei LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(7):1845-1850
		                        		
		                        			
		                        			Objective To investigate the main active components and pharmacological mechanism of Bushen Huoxue Decoction in the treatment of osteoporotic fractures by network pharmacology.Methods The chemical constituents of Bushen Huoxue Decoction were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP).The disease targets of osteoporosis were collected through the DisGeNET database.The predictive targets of Bushen Huoxue Decoction in the treatment of osteoporosis were screened by Venn diagram.Through gene ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis,the biological processes and signaling pathways of Bushen Huoxue Decoction in the treatment of osteoporotic fractures were preliminarily obtained.Cytoscape 3.9.1 software was used to construct the network diagram of Chinese medicinal components-disease targets-pathways.Through the analysis of topological parameters and the degree value as the investigation,the main active components of Bushen Huoxue Decoction in the treatment of osteoporotic fractures were obtained.The protein-protein interaction(PPI)network was constructed by online String 11.5 software,and the pharmacological mechanism of Bushen Huoxue Decoction in the treatment of osteoporotic fractures at the protein molecular level was obtained by topological parameter analysis.Results A total of 1 236 chemical components were screened out,including 72 predicted targets.It involves biological processes such as DNA transcription,translation,and even binding between enzymes,and intersects with KEGG signaling pathways such as diabetes,atherosclerosis and cancer.Conclusion Bushen Huoxue Decoction mainly through dehydrodiethylene glycol 4,Yangambin,Atropine,arachidonic acid,ellagic acid,stigmasterol,isorhamnetin and other major components acting on nuclear transcription factor p65,mitogen-activated protein kinase,estrogen receptor,tumor necrosis factor,cell tumor antigen and other protein molecules play a role in the promotion of osteoporotic fractures healing.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail