1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
3.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
4.Research progress in pharmacological effects of puerarin.
Xiao-Wei MENG ; Feng-Mei GUO ; Qian-Qian WANG ; Jia-Rong LI ; Ni ZHANG ; Fei QU ; Rong-Hua LIU ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2025;50(11):2954-2968
Traditional Chinese medicine(TCM), a treasure of the Chinese nation, contains abundant chemical components and demonstrates unique pharmacological activities, showing important values in clinical applications. With profound connotations and broad application prospects, TCM urgently needs us to further explore and conduct systematic research. Puerarin is a small-molecule natural isoflavonoid carbon glycoside extracted from plants of Pueraria. It is also the main active ingredient of Puerariae Lobata Radix, a Chinese herbal medicine with both medicinal and edible values. Puerarin has a variety of pharmacological effects such as blood pressure-lowering, anti-atherosclerosis, anti-ischemia-reperfusion injury, antithrombotic, anti-tumor, anti-inflammatory, liver-protecting, nerve cell-protecting, and intestinal microbiota-regulating effects. It is also an active ingredient that has been widely studied. This article comprehensively reviews the research progress in the pharmacological effects and molecular mechanisms of puerarin over the years, aiming to provide references and theoretical support for the in-depth research and development as well as clinical application of puerarin.
Isoflavones/chemistry*
;
Humans
;
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Pueraria/chemistry*
5.Preparation, characterization, and in vitro anti-liver tumor activity of bufalin nanoparticles with Scrophularia ningpoensis polysaccharide and ursodeoxycholic acid as carriers.
Zhen ZHENG ; Bi-Qi DENG ; Xue-Mei CHEN ; Li-Qiao ZHU ; Hua-Gang SHENG
China Journal of Chinese Materia Medica 2025;50(11):3013-3023
Bufalin(BF)has a significant anti-tumor effect, but its clinical application is severely restricted by its high toxicity and poor water solubility. In this study, Scrophularia ningpoensis polysaccharide(SNP)and ursodeoxycholic acid(UDCA) were synthesized into an SNP-UDCA conjugate. BF was encapsulated to prepare BF/SNP-UDCA nanoparticles(NPs). The amphiphilic compound SNP-UDCA was synthesized via the one-step method, and its structure was characterized by Fourier-transform infrared spectroscopy(FT-IR)and proton nuclear magnetic resonance(~1H-NMR). The preparation process of BF/SNP-UDCA NPs was optimized through single-factor investigations. The encapsulation efficiency and drug-loading capacity of BF/SNP-UDCA NPs were determined by high-performance liquid chromatography(HPLC). The molecular form of BF/SNP-UDCA NPs was characterized by using a transmission electron microscope, X-ray diffraction(XRD), and differential scanning calorimeter(DSC). Additionally, the stability of BF/SNP-UDCA NPs was evaluated. The release behavior of BF/SNP-UDCA NPs at different pH values was determined by dialysis. The in vitro anti-tumor effect of BF/SNP-UDCA NPs was evaluated by MTT cytotoxicity assay, flow cytometry for apoptosis, and cellular uptake. The in vitro liver targeting was evaluated by measuring cellular uptake by laser confocal microscopy. The results demonstrated that the SNP-UDCA conjugate was successfully synthesized through an esterification reaction between SNP and UDCA. The preparation process of BF/SNP-UDCA NPs was as follows: the feed ratio of SNP-UDCA to BF was 2∶1, the ultrasonic time was 30 minutes, and the stirring time was two hours. The prepared BF/SNP-UDCA NPs were spherical in shape, with a particle size of(252.74±6.05)nm, an encapsulation efficiency of 65.00%±2.51%, and a drug-loading capacity of 6.80%±0.44%. The XRD and DSC results indicated that BF was encapsulated within the NPs and existed in a molecular or amorphous state. The short-term stability of BF/SNP-UDCA NPs and stability in DMEM medium are good, and their in vitro release behavior followed the first-order equation and was pH-dependent according to the in vitro experiment. Compared with BF, BF/SNP-UDCA NPs at the same concentration showed significantly stronger cytotoxicity and apoptotic effects on HepG2 cells(P<0.05, P<0.01). The uptake of coumarin 6(C6)/SNP-UDCA NPs in HepG2 cells was time-dependent and higher than that in HeLa cells at the same concentration of C6/SNP-UDCA NPs. Moreover, after treatment with SNP, the uptake of C6/SNP-UDCA NPs in HepG2 cells decreased. In conclusion, the preparation process of BF/SNP-UDCA NPs was simple and feasible. BF/SNP-UDCA NPs could enhance the targeting ability and inhibitory effect of BF on liver cancer cells. This study will provide a foundation for liver-targeting nanoformulations of BF.
Bufanolides/pharmacology*
;
Nanoparticles/chemistry*
;
Humans
;
Drug Carriers/chemistry*
;
Ursodeoxycholic Acid/chemistry*
;
Antineoplastic Agents/pharmacology*
;
Polysaccharides/chemistry*
;
Scrophularia/chemistry*
;
Liver Neoplasms/physiopathology*
;
Hep G2 Cells
6.Plastrum Testudinis Stimulates Bone Formation through Wnt/β-catenin Signaling Pathway Regulated by miR-214.
Qing LIN ; Bi-Yi ZHAO ; Xiao-Yun LI ; Wei-Peng SUN ; Hong-Hao HUANG ; Yu-Mei YANG ; Hao-Yu WANG ; Xiao-Feng ZHU ; Li YANG ; Rong-Hua ZHANG
Chinese journal of integrative medicine 2025;31(8):707-716
OBJECTIVE:
To investigate the Wnt signaling pathway and miRNAs mechanism of extracts of Plastrum Testudinis (PT) in the treatment of osteoporosis (OP).
METHODS:
Thirty female Sprague Dawley rats were randomly divided into 5 groups by random number table method, including sham group, ovariectomized group (OVX), ovariectomized groups treated with high-, medium-, and low-dose PT (160, 80, 40 mg/kg per day, respectively), with 6 rats in each group. Except for the sham group, the other rats underwent bilateral ovariectomy to simulate OP and received PT by oral gavage for 10 consecutive weeks. After treatment, bone mineral density was measured by dual-energy X-ray absorptiometry; bone microstructure was analyzed by micro-computed tomography and hematoxylin and eosin staining; and the expressions of osteogenic differentiation-related factors were detected by immunochemistry, Western blot, and quantitative polymerase chain reaction. In addition, Dickkopf-1 (Dkk-1) was used to inhibit the Wnt signaling pathway in bone marrow mesenchymal stem cells (BMSCs) and miRNA overexpression was used to evaluate the effect of miR-214 on the osteogenic differentiation of BMSCs. Subsequently, PT extract was used to rescue the effects of Dkk-1 and miR-214, and its impacts on the osteogenic differentiation-related factors of BMSCs were evaluated.
RESULTS:
PT-M and PT-L significantly reduced the weight gain in OVX rats (P<0.05). PT also regulated the bone mass and bone microarchitecture of the femur in OVX rats, and increased the expressions of bone formation-related factors including alkaline phosphatase, bone morphogenetic protein type 2, collagen type I alpha 1, and runt-related transcription factor 2 when compared with the OVX group (P<0.05 or P<0.01). Meanwhile, different doses of PT significantly rescued the inhibition of Wnt signaling pathway-related factors in OVX rats, and increased the mRNA or protein expressions of Wnt3a, β-catenin, glycogen synthase kinase-3β, and low-density lipoprotein receptor-related protein 5 (P<0.05 or P<0.01). PT stimulated the osteogenic differentiation of BMSCs inhibited by Dkk-1 and activated the Wnt signaling pathway. In addition, the expression of miR-214 was decreased in OVX rats (P<0.01), and it was negatively correlated with the osteogenic differentiation of BMSCs (P<0.01). MiR-214 mimic inhibited Wnt signaling pathway in BMSCs (P<0.05 or P<0.01). Conversely, PT effectively counteracted the effect of miR-214 mimic, thereby activating the Wnt signaling pathway and stimulating osteogenic differentiation in BMSCs (P<0.05 or P<0.01).
CONCLUSION
PT stimulates bone formation in OVX rats through β-catenin-mediated Wnt signaling pathway, which may be related to inhibiting miR-214 in BMSCs.
Animals
;
MicroRNAs/genetics*
;
Female
;
Rats, Sprague-Dawley
;
Wnt Signaling Pathway/genetics*
;
Osteogenesis/genetics*
;
Mesenchymal Stem Cells/cytology*
;
Cell Differentiation/drug effects*
;
Bone Density/drug effects*
;
Ovariectomy
;
Osteoporosis/drug therapy*
;
beta Catenin/metabolism*
;
Rats
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
7.Preliminary exploration of greater omentum metastasis rate in patients with gastric cancer: clinical pilot study of Dragon 05 trial
Zichen HUA ; Yu MEI ; Chen LI ; Chao YAN ; Min YAN ; Zhenggang ZHU ; Xuexin YAO
Journal of Surgery Concepts & Practice 2025;30(1):41-46
Objective To investigate the rate of greater omentum metastasis in gastric cancer(GC). Methods General informations of patients with GC who underwent radical gastrectomy at Shanghai Ruijin Hospital in May 2020 were collected, and their clinicopathological characteristics were analyzed to find risk factors of greater omentum metastasis. Recurrence and survival were also assessed. Results A total of 59 patients with GC were included in the study, of which 2(3.4%) had greater omentum metastasis. One patient presented a pathological stage of pT4aN3bM0 and another ypT4bN1M0. The 3-year overall survival rate of patients in the study was 87.9%. Conclusions The rate of greater omentum metastasis was relatively low, and patients with greater omentum metastasis had an more advanced pathological stage. To further validate this clinical issue, a prospective randomized controlled clinical study should be conducted between radical gastrectomy with omentectomy and omentum-preserving radical gastrectomy.
8.Effects of template and pore-forming agent method on the structure and drug delivery of porous maltodextrin
Zhe LI ; Xiao-sui LUO ; Wei-feng ZHU ; Qiong LI ; Yong-mei GUAN ; Zheng-ji JIN ; Li-hua CHEN ; Liang-shan MING
Acta Pharmaceutica Sinica 2024;59(8):2381-2395
This study using maltodextrin as raw material, 1%-5% polyvinylpyrrolidone K30 as template agent, 1%-5% ammonium bicarbonate as pore-forming agent, curcumin and ibuprofen as model drugs. Porous maltodextrin was prepared by template and pore-forming agent methods, respectively. The structure and drug delivery behavior of porous maltodextrin prepared by different technologies were comprehensively characterized. The results showed that the porous maltodextrin prepared by pore-forming agent method had larger specific surface area (6.449 4 m2·g-1) and pore size (32.804 2 nm), which was significantly better than that by template agent method (3.670 2 m2·g-1, 15.278 5 nm). The adsorption kinetics between porous maltodextrin prepared by pore-forming agent method and curcumin were suitable for quasi-first order adsorption kinetic model, and that between porous maltodextrin and ibuprofen were suitable for quasi-second order adsorption kinetic model. While the adsorption kinetics between porous maltodextrin prepared by template agent method and two model drugs were both suitable for the quasi-first order adsorption kinetic model. In addition, the dissolution behavior analysis showed that the porous maltodextrin prepared by the two technologies can significantly improve the dissolution behavior of insoluble drugs, and the drug release was both carried out by diffusion mechanism, which suitable for the Peppas kinetic release model, but the porous maltodextrin prepared by template agent method had a faster release rate. The change of nozzle diameter had no significant effect on the adsorption process and drug release behavior of porous maltodextrin. In conclusion, the porous maltodextrins prepared by two different technologies were both beneficial to the delivery of insoluble drugs, and the template agent method was the best for delivery of insoluble drugs. This study can provide theoretical basis for the preparation of porous particles, promote the application of porous particles in insoluble drugs, and improve the bioavailability of insoluble drugs.
9.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba
Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
In order to study the compounds from
10.Effects of raddeanin A on the proliferation and apoptosis of colon cancer HCT116 cells
Yu ZHU ; Jing-Zhi JIANG ; Xue-Mei JIN ; Li LI ; Li-Hua PIAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):830-833
Objective To investigate the effects of raddeanin A(RA)on the proliferation and apoptosis of HCT116 cells and on the β-catenin/c-Myc pathway.Methods Human colon cancer HCT116 cells were divided into four groups:Control group,experimental-L group,experimental-M group and experimental-H group.Experimental-L,experimental-M,experimental-H groups were treated with 5,10 and 20 μmol·L-1raddeanin A,and the control group was given the same amount of normal saline,respectively.The inhibitory effect of RA on the proliferation of HCT116 cells of colon cancer was detected by cell counting kit-8(CCK-8)method.Cell nucleus morphology change was observed with the fluorescence;the apoptosis rate was detected by flow cytometry;and the expression of related proteins of β-catenin/c-Myc signaling pathway was detected by western blot.Results After 48 h,the cell inhibitory rates of the control group,experimental-L,experimental-M,experimental-H groups were 0,(19.15±0.65)%,(35.11±0.40)%and(49.93±1.13)%,respectively;the cell apoptosis rates were(0.16±0.18)%,(9.26±0.42)%,(17.87±2.54)%and(38.10±2.70)%,respectively;the protein expression levels of β-catenin were 0.74±0.03,0.69±0.01,0.33±0.02 and 0.16±0.04,respectively;the protein expression levels of c-Myc were 0.89±0.01,0.54±0.03,0.29±0.03 and 0.13±0.04,respectively;the protein expression levels of Cyclin D1 were 0.84±0.04,0.66±0.01,0.48±0.06 and 0.21±0.03,respectively;the expression levels of Cleaved-Caspase3 protein were 0.19±0.03,0.26±0.04,0.45±0.04 and 0.78±0.01,respectively.The above indicators in the experimental-L,experimental-M,experimental-H groups showed statistically significant differences compared to those of control group(all P<0.05).Conclusion RA can inhibit the proliferation of HCT116 cells and induce apoptosis,which may be related to the inhibition of β-catenin/c-Myc signaling pathway.

Result Analysis
Print
Save
E-mail