1.Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins
Boeun LEE ; Na-Young SHIN ; Chang-hyun PARK ; Yoonho NAM ; Soo Mee LIM ; Kook Jin AHN
Yonsei Medical Journal 2024;65(11):661-668
Purpose:
This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings.
Materials and Methods:
A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient.
Results:
The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings.
Conclusion
Our results suggest that genetic factors affect the location of dPVS.
2.Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins
Boeun LEE ; Na-Young SHIN ; Chang-hyun PARK ; Yoonho NAM ; Soo Mee LIM ; Kook Jin AHN
Yonsei Medical Journal 2024;65(11):661-668
Purpose:
This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings.
Materials and Methods:
A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient.
Results:
The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings.
Conclusion
Our results suggest that genetic factors affect the location of dPVS.
3.Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins
Boeun LEE ; Na-Young SHIN ; Chang-hyun PARK ; Yoonho NAM ; Soo Mee LIM ; Kook Jin AHN
Yonsei Medical Journal 2024;65(11):661-668
Purpose:
This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings.
Materials and Methods:
A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient.
Results:
The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings.
Conclusion
Our results suggest that genetic factors affect the location of dPVS.
4.Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins
Boeun LEE ; Na-Young SHIN ; Chang-hyun PARK ; Yoonho NAM ; Soo Mee LIM ; Kook Jin AHN
Yonsei Medical Journal 2024;65(11):661-668
Purpose:
This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings.
Materials and Methods:
A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient.
Results:
The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings.
Conclusion
Our results suggest that genetic factors affect the location of dPVS.
5.Spatial Similarity of MRI-Visible Perivascular Spaces in Healthy Young Adult Twins
Boeun LEE ; Na-Young SHIN ; Chang-hyun PARK ; Yoonho NAM ; Soo Mee LIM ; Kook Jin AHN
Yonsei Medical Journal 2024;65(11):661-668
Purpose:
This study aimed to determine whether genetic factors affect the location of dilated perivascular spaces (dPVS) by comparing healthy young twins and non-twin (NT) siblings.
Materials and Methods:
A total of 700 healthy young adult twins and NT siblings [138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 133 NT sibling pairs] were collected from the Human Connectome Project dataset. dPVS was automatically segmented and normalized to standard space. Then, spatial similarity indices [mean squared error (MSE), structural similarity (SSIM), and dice similarity (DS)] were calculated for dPVS in the basal ganglia (BGdPVS) and white matter (WMdPVS) between paired subjects before and after propensity score matching of dPVS volumes between groups. Within-pair correlations for the regional volumes of dVPS were also assessed using the intraclass correlation coefficient.
Results:
The spatial similarity of dPVS was significantly higher in MZ twins [higher DS (median, 0.382 and 0.310) and SSIM (0.963 and 0.887) and lower MSE (0.005 and 0.005) for BGdPVS and WMdPVS, respectively] than in DZ twins [DS (0.121 and 0.119), SSIM (0.941 and 0.868), and MSE (0.010 and 0.011)] and NT siblings [DS (0.106 and 0.097), SSIM (0.924 and 0.848), and MSE (0.016 and 0.017)]. No significant difference was found between DZ twins and NT siblings. Similar results were found even after the subjects were matched according to dPVS volume. Regional dPVS volumes were also more correlated within pairs in MZ twins than in DZ twins and NT siblings.
Conclusion
Our results suggest that genetic factors affect the location of dPVS.
6.Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP
Miso KIM ; Hyo Sup SHIM ; Sheehyun KIM ; In Hee LEE ; Jihun KIM ; Shinkyo YOON ; Hyung-Don KIM ; Inkeun PARK ; Jae Ho JEONG ; Changhoon YOO ; Jaekyung CHEON ; In-Ho KIM ; Jieun LEE ; Sook Hee HONG ; Sehhoon PARK ; Hyun Ae JUNG ; Jin Won KIM ; Han Jo KIM ; Yongjun CHA ; Sun Min LIM ; Han Sang KIM ; Choong-kun LEE ; Jee Hung KIM ; Sang Hoon CHUN ; Jina YUN ; So Yeon PARK ; Hye Seung LEE ; Yong Mee CHO ; Soo Jeong NAM ; Kiyong NA ; Sun Och YOON ; Ahwon LEE ; Kee-Taek JANG ; Hongseok YUN ; Sungyoung LEE ; Jee Hyun KIM ; Wan-Seop KIM
Cancer Research and Treatment 2024;56(3):721-742
In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
7.Clinical practice recommendations for the use of next-generation sequencing in patients with solid cancer: a joint report from KSMO and KSP
Miso KIM ; Hyo Sup SHIM ; Sheehyun KIM ; In Hee LEE ; Jihun KIM ; Shinkyo YOON ; Hyung-Don KIM ; Inkeun PARK ; Jae Ho JEONG ; Changhoon YOO ; Jaekyung CHEON ; In-Ho KIM ; Jieun LEE ; Sook Hee HONG ; Sehhoon PARK ; Hyun Ae JUNG ; Jin Won KIM ; Han Jo KIM ; Yongjun CHA ; Sun Min LIM ; Han Sang KIM ; Choong-Kun LEE ; Jee Hung KIM ; Sang Hoon CHUN ; Jina YUN ; So Yeon PARK ; Hye Seung LEE ; Yong Mee CHO ; Soo Jeong NAM ; Kiyong NA ; Sun Och YOON ; Ahwon LEE ; Kee-Taek JANG ; Hongseok YUN ; Sungyoung LEE ; Jee Hyun KIM ; Wan-Seop KIM
Journal of Pathology and Translational Medicine 2024;58(4):147-164
In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
8.Korean National Healthcare-associated Infections SurveillanceSystem for Hand Hygiene Report: Data Summary from July 2019to December 2022
Sung Ran KIM ; Kyung-Sook CHA ; Oh Mee KWEON ; Mi Na KIM ; Og Son KIM ; Ji-Hee KIM ; Soyeon PARK ; Myoung Jin SHIN ; Eun-Sung YOU ; Sung Eun LEE ; Sun Ju JUNG ; Jongsuk JEOUNG ; In-Soon CHOI ; Jong Rim CHOI ; Ji-Youn CHOI ; Si-Hyeon HAN ; Hae Kyung HONG
Korean Journal of healthcare-associated Infection Control and Prevention 2024;29(1):40-47
Background:
Hand hygiene is considered the simplest and most cost-effective method of infection prevention. Regular observation and feedback on hand hygiene compliance are key strategies for its enhancement. This study evaluated the effectiveness of hand hygiene surveillance, including direct observation and feedback, by comprehensively analyzing the reported hand hygiene compliance within the Korean National Healthcare-Associated Infections Surveillance System from 2019 to 2022.
Methods:
Participating medical institutions included general hospitals and hospitals with infection control departments that consented to participate. Hand hygiene surveillance was conducted using direct observation. Collected data, including healthcare workers, clinical areas, hand hygiene moments, and hand hygiene compliance, were recorded to calculate hand hygiene compliance rates. Additionally, the volume of alcohol-based hand sanitizers used per patient per day was investigated as an indirect indicator of hand hygiene compliance. The study was conducted from July 2019 to December 2022.
Results:
Hand hygiene compliance increased from 87.2% in Q3 2019 to 89.9% in 2022. Nurses and medical technologists showed the highest compliance rates, whereas doctors showed the lowest compliance rates. Intensive care units excelled in compliance, whereas emergency de partments lagged. Compliance was highest after patient contact and lowest when the patient’s surroundings were touched. Larger hospitals consumed more alcohol-based hand sanitizers than smaller hospitals did.
Conclusion
This study confirmed an improvement in hand hygiene compliance through sustained surveillance, indicating its contribution not only to preventing infection transfer within healthcare facilities but also to fostering a culture of hand hygiene in the country.
9.A Recent Review of the Management of Postmenopausal Symptoms in Breast Cancer Survivors
Chaewon KIM ; Yoojin NA ; Sanghee LEE ; Jung Yoon PARK ; Youn-Jee CHUNG ; Jaeyen SONG ; Mee-Ran KIM
Journal of Menopausal Medicine 2023;29(3):85-91
The treatment strategy for postmenopausal symptoms resulting from estrogen deficiency in breast cancer survivors receiving endocrine therapy should differ from that in normal women. Several nonhormonal pharmacological therapies can be used to treat vasomotor symptoms. Cognitive-behavioral therapy can help alleviate psychophysiological symptoms, including depression and sleep disorders.Topical vaginal estrogen and moisturizers may aid in treating genitourinary symptoms. Additionally, chronic conditions must be individually managed. Prevention of osteoporosis should always be included in the management, and physicians should be alert to possible cardiovascular risk and cognitive function changes.
10.Comparison of the Right and Left Femur Bone Mineral Densities in Postmenopausal Women
Sejin KIM ; Yoojin NA ; Minji KO ; Jung Yoon PARK ; Hyonjee YOON ; Jae-Yen SONG ; Youn-Jee CHUNG ; Inhye SHIN ; Chaewon KIM ; Jung Hyun PARK ; Mee-Ran KIM
Journal of Menopausal Medicine 2023;29(3):112-118
Objectives:
Bone mineral density (BMD) is measured in the hip and posteroanterior spine; moreover, according to the 2019 International Society for Clinical Densitometry guidelines, unilateral hip can be used. This study aimed to determine whether there is a difference between the BMD of both the femurs in postmenopausal women.
Methods:
A total of 343 postmenopausal women were enrolled in this study from January 1, 2010, to December 31, 2019 at a single tertiary hospital. By using the Hologic® Horizon W DXA System, the femur and spine BMD was measured; BMD was recorded in g/cm 2 .Following regions were analyzed in both the femurs: the femur neck, the trochanter area, and total femur.
Results:
Mean age at imaging was 62 ± 9.7 years, and significant difference in the total BMD of both the femurs (P = 0.003) was observed. In secondary analysis, patients with osteoporosis showed significant contralateral BMD discrepancies in trochanter and total proximal femur BMD (P = 0.041 and P = 0.011, respectively). However, in women with normal BMD, no significant difference between the right and left femur BMD was observed. Furthermore, measurement of solely the unilateral hip can lead to a 16.9% of underdiagnosis in postmenopausal women.
Conclusions
In conclusion, it is necessary to check BMD in both hips, particularly in patients suspected of osteoporosis.

Result Analysis
Print
Save
E-mail